

Benchmark analyses of the final Ta evaluated data for fusion neutron transport calculations

S.P. Simakov, U. Fischer

Institut für Reaktorsicherheit, Forschungszentrum Karlsruhe, 76021 Karlsruhe, Germany

JEFF/EFF Meetings, 4 - 6 June 2007, Aix-en-Provence, France

Objectives and Content

> <u>Objective:</u>

- validation of the Ta evaluated data (final version for JEFF-3.2T) relevant for fusion neutron transport calculations
- Content of presentation:
 - available evaluations for Ta isotopes
 - available experimental benchmark and DDX data for Ta
 - comparison of transport calculations and DDX with experiments
 - conclusions

Ta isotopes abundances and evaluated cross sections files

Ta natural abundancies:	ENDF/B-VI (1972)	JENDL-3.3 (2002)	JEFF-3.1 (2005)	FENDL-2.1 (2004)	JEFF-3.2T (2007)
	adopted ENDF/B-V	updated JENDL-3.2	adopted JENDL-3.3	adopted JENDL-3.3	new
	< 20 MeV	< 20 MeV	< 20 MeV	< 20 MeV	< 150 MeV
<u>Ta-180^m (10¹⁵a) - 0.012%</u>	-	-	-	-	-
<u>Ta-181 (stable) - 99.998%</u>	Ta-181	Ta-181	Ta-181	Ta-181	Ta-181
Ta-182 (114 d) - 0.0 %	Ta-182	-	Ta-182 (ENDF/B-IV)	-	-

- No evaluation is available for the stable isotope Ta-180m !

- Now three independent evaluations do exist: ENDF/B-VI, JENDL-3.3 and JENDL-3.2T = FZK'06 model evaluation (P.Pereslavtsev et al.), subsequent IIK adjustment to the experimental partial cross sections (H.Vonach et al.)

Experimental Integral and Differential neutron data relevant for Ta evaluated cross sections validation for fusion application

Neutron Transport Benchmarks:

1. Livermore (LLNL) Pulsed Spheres

- neutron leakage spectra from two Ta spheres with 14 MeV central source *Information about Experiment is available from:*
- NSE 92 (1986) 382: Ta shell sizes, leakage energy spectra
- UCRL-51144 (1972), LA-12885 (1994): T(d,n) neutron source specification, TOF leakage spectra and MCNP input decks for 28 shperes, except Ta

2. Lewis Research Center (LRC, Ohio) Sphere

- neutron leakage spectra from Ta sphere with Am-Be source (mean energy 4 MeV) Information about Experiment is available from:
- NSE 53 (1974) 285: Ta shell sizes, Source and Leakage energy spectra

Differential cross sections (n,xn):

A few experiments: IPPE (Obninsk), IRK (Vienna), OSA (Osaka), TOH (Tohoku), TUD (Dresden) ... - secondary neutron energy/angular distributions for incident energies 5 to 20 MeV

Two available Ta-Shell Neutron Transport Experiments

Livermore (1986):

Shell #1: outer R = 3.4 cm (1 mfp)Shell #2: outer R = 10.2 cm (3 mfp)14 MeV-neutron source: TiT +d, E_d = 400 keVMethod: Time-of-Flight, L = 10 mn-detector: $\Theta = 26^{\circ}$, E_{thresh} > 1 MeV

Lewis Research Center (1974):

Shell: outer R = 12.1 cm inner r = 3.1 cm (wall 9 cm, 4 mfp) ²⁴¹Am-Be neutron source, $\langle E \rangle = 4$ MeV Method: Proton-recoil scintil. at L = 2 m n-detector: $\Theta = 26^{\circ}$, E_{thresh} > 1 MeV

<u>Findings</u>: - ENDF/B-VI & JENDL-3.3: 20 - 70% over- or under-estimation - FZK'06: 10 - 20% oscillations around the experimental spectra

- JEFF-3.2T the same as FZK'06, slight improvements below 7MeV for thicker shell

- JEDL-3.3 underestimates by 20% below 6 MeV
- ENDF/B-VI & FZK'06 predict experiment within 5 – 15% except energies below 2 MeV (detector threshold effect ?)
- JEFF-3.2T systematically underestimate by 5 -20%

Validation against Differential XS for Ta(n,xn) at 14 MeV

- inconsistency of neutron spectra shapes from (n,n') and (n,2n) in ENDF/B-VI
- underestimation of high energy tails (pre-equilibrium/direct processes) from (n,n') reactions in ENDF/B-VI and JENDL-3.3
- satisfactory secondary neutron spectra reproduction by JEFF-3.2T (and FZK'06)

- Energy Distribution: JEFF-3.2T (and others) needs updating
- Angular Distribution: JEFF-3.2T looks reasonable, ENDF/B-VI wrongly isotropic

- Energy Distribution: JEFF-3.2T (and others) needs updating will explain unsatisfactory reproduction of spherical benchmark with Am-Be (<E> = 4 MeV)?
- Angular Distribution: JEFF-3.2T looks reasonable, ENDF/B-VI wrongly isotropic

Conclusions

- The new evaluation JEFF-3.2T (FZK/IIK) for Ta-181 reasonably agrees with differential neutron scattering XS at 8 and 14 MeV and predict transport of T-D neutrons through Tantalum up to 3 mfp thickness
- At 5 MeV and probably lower energies the discrepancies have been found both for Ta(n,n') reaction and neutron transport through the sphere driven by Am-Be source