

of TUD Benchmark

EFF-DOC-897

Re-analysis of TUD Benchmark Experiment on Tungsten Using JENDL-3.3 Data

U. Fischer^{a)}, D. Leichtle^{a)} and R. Perel^{b)}

^{a)}Forschungszentrum Karlsruhe, Germany ^{b)}Hebrew University of Jerusalem, Israel

EFF/EAF Monitoring Meeting, OECD/IEA Headquarters, Paris, May 10-12, 2004

Outline

- TUD Experiment on W at FNG
 - Measurement of neutron & photon flux spectra in W assembly using a NE 213 liquid-scintillation spectrometer (K. Seidel et al., EFF-DOC-857)
 - Spectra measured in four positions in W assembly
- Previous analyses (U. Fischer et al, EFF-DOC-860)
 - MCNP4C calculations for 3D model of W assembly & rack, spectrometer, neutron generator and experimental hall (FNG)
 - W data: EFF-2.4 (=JENDL-3.0), FENDL-1(=ENDF/B-VI.0),
 FENDL-2(=JENDL-FF)
 - Comparison of flux spectra & C/E-data
 - Cross-section data checks
- \Rightarrow Re-analysis using recent JENDL-3.3 data
- \Rightarrow Support for ongoing EFF evaluation of W
 - (P. Pereslavtsev et al, EFF-DOC 898)

EFF-DOC-897, EFF/EAF Monitoring Meeting, OECD/IEA Headquarters, Paris, May 10-12, 2004

EFF-DOC-897, EFF/EAF Monitoring Meeting, OECD/IEA Headquarters, Paris, May 10-12, 2004

EFF-DOC-897, EFF/EAF Monitoring Meeting, OECD/IEA Headquarters, Paris, May 10-12, 2004

^{nat}W neutron emission cross-section

EFF-DOC-897, EFF/EAF Monitoring Meeting, OECD/IEA Headquarters, Paris, May 10-12, 2004

^{nat}W(n,2n) cross-section

Conclusions

- JENDL-3.3 vs. FENDL-2 (=JENDL-FF)
 - Isotopic evaluation
 - Reduction of (n,2n) cross-section around 14 MeV
 - \Rightarrow Better agreement for high energy flux above 12.5 MeV
 - Soft neutron emission spectrum
 - \Rightarrow Strong underestimation of neutron flux in 1 5 MeV range
 - \Rightarrow Underestimation of fast (E> 1 MeV) neutron flux up to 25 % (more than other available W evaluations)

⇒ Overestimation of low energy neutron flux indicated (cf. also I. Kodeli, EFF-DOC-885, November 2003)

 JENDL-3.3 W data not optimal choice for fusion applications

 \Rightarrow Improvements expected with ongoing EFF evaluation