Benchmark analyses of Pb JEFF-3.1T data for fusion applications

S.P. Simakov, U. Fischer

Institut für Reaktorsicherheit, Forschungszentrum Karlsruhe, 76021 Karlsruhe, Germany

JEFF/EFF Meetings, 2 - 4 May 2005, NEA Data Bank, Paris

Objective and Content

- Ø Objective:
 - validation of the JEFF-3.1T, ENDF-B6.8 and FENDL-2.1 files for Lead against fusion relevant benchmarks

Ø Content:

- available experimental data base at 14 MeV
- available evaluations for Pb isotopes,
- comparison of transport calculations with experiments
- conclusions.

Integral and Cross Sections Experimental Data relevant for Pb evaluated data validation at 14 MeV /T(d,n) source/

Shape: Wall thickness (sizes), cm	Method	Laboratory	Year	Analyses	
Total Neutron Leakage (Multiplication) with T(d,n)-Source in the Center					
Shell: $t = 3.0 (R = 12, r = 9.0)$	4π-Boron Tank,	KIAE, Moscow	1989	+	
t = 9.0 (R = 12, r = 3.0)	no detector threshold				
Box: $t = 10.0 (60 \times (35 \times 35 - 15 \times 15))$	4π -Polypropyl. Block, BF ₃	BARC, Bombay	1986	-	
Neutron Leakage Spectra with T(d,n)-Source in the Center					
Shell: $t = 5.6$ ($R = 12$, $r = 4.5$)	Time-of-Flight,	LLL, Livermore	1986	-	
t = 9.0 (R = 12, r = 4.5)	$\Theta = 26^{\circ}, E > 1 \text{ MeV}$				
Shell: $t = 7.5$ ($R = 12$, $r = 4.5$)	Time-of-Flight, 0°, 30°, 60°	IPPE, Obninsk	1988	+	
Shell: $t = 7.5$ ($R = 12$, $r = 4.5$)	Proton recoil, 0°, E>1.2MeV	IRD, Prague	1993	+	
Shell: $t = 22.5$ (R = 25, r = 2.5)	TOF, p-recoil, 90°, E>45keV	TUD, Dresden	1987	+	
Shell: $t = 3.0 (R = 8, r = 5.0)$	n-TOF,	OKTAVIAN, Osaka	1984	+/-	
t = 6.0 (R = 11, r = 5.0)	Detector angles: 0° , 50° ,				
t = 9.0 (R = 14, r = 5.0)	E > 17 keV				
$t = 12.0 \ (R = 17, r = 5.0)$					
Angular Neutron Spectra from Slab with T(d,n)-Source and Detector on different sides of Slab					
Slab: $t = 5.08 (R = 31.5)$	Time-of-Flight,	JAERI, Tokai-mura	1991	+	
20.3 (R = 31.5)	Detector angles: $0^{\circ} - 67^{\circ}$				
40.6 (R = 31.5)	E > 100 keV				
Gamma-ray Leakage Spectra with T(d,n)-Source in the Center					
Shell: $t = 10.0 (R = 20, r = 10)$	NaI-pulse-height spectr.	OKTAVIAN, Osaka	1989	+	
Energy-Angular Differential Cross Sections at 14 MeV					
208 Pb(n,xn) & 208 Pb(n,n' γ)	Time-of-flight, n- γ coin.	IPPE, Obninsk	1993	+	
^{nat} Pb(n,xn)	Time-of-Flight	OKTAVIAN, Osaka	1984	+	
$^{nat}Pb(n,\gamma)$	Scint. pair spectroscopy	NJS, Lublana	1979	+	

Pb evaluated cross sections files selected for validation

JEFF-3.1T	ENDF-B6.8	FENDL-2.1	
(2004)	(1996)	(2004)	
E < 200 MeV	E < 150 MeV	E < 150 MeV	
Pb-204	-	-	
Pb-206	Pb-206 (mod 2)	Pb-206 = ENDF-B6.8 mod 2	
Pb-207	Pb-207 (mod 3)	Pb-207 = ENDF-B6.8 mod 3	
Pb-208	Pb-208 (mod 3)	$Pb-208 = ENDF-B6.8 \mod 3$	

- Two independent libraries ENDF-B6.8 and JEFF-3.1T were validated, since FENDL-2.1 = ENDF-B6.8

Validation against Total Neutron Leakage from Pb-Shells (Neutron Multiplication)

<u>Findings</u>: - deviations up to 20% (double of experimenral uncertainties) for the neutron leakage spectra measured in IPPE & TUD - deviation up to 100% for the case of IRD experiment

Validation against Angular Neutron Spectra from Pb-slab (FNS-experiment)

<u>Findings</u>: - up to 10-20% underestimation for neutrons below 5 MeV - much larger deviations for 14 MeV-group (elastic)

JEFF/EFF Meeting, NEA Data Bank, Paris

Validation against Secondary neutrons Angular Distribution (SAD) from ²⁰⁸Pb(n,xn) reaction at 14 MeV

Findings:

Reasonable prediction of the secondary neutron angular distributions for the ²⁰⁸Pb(n,xn) reaction

by ENDF-B6 and JEFF-3.1T

<u>Findings</u>: - large underestimation of g-ray leakage above 5MeV by JEFF-3.1T & ENDF-B6.8 <u>Most likely reason</u>: - wrong presentation of Pb(n,xg) energy differ. cross section at 14 MeV

Conclusions on status of JEFF-3.1 and ENDF-B6.8 (FENDL-2.1) Pb data derived from fusion benchmarks

Ø Transport of Neutrons:

- JEFF-3.1T and ENDF-B6.8 are close each other
- they underestime by 15% neutron multiplication at lead thickness ≈ 20 cm,
- diviate by 20% in predicting the energy distribution of leaking neutrons in spherical symmetry (shells), and more fo the case of "elastic" scattering on lead slabs,
- correct present the energy and angular distributions of secondary neutrons for (n,xn) and $(n,n'\gamma)$ reaction on Pb and ²⁰⁸Pb.
- Ø Transport of Secondary Gammas:
 - large underestimation of leakage spectrum above 5 MeV (JEFF-3.1T worse than ENDF-B6.8)
 - large underestimation of secondary γ-rays with energies 5-10 MeV from Pb(n,xγ) reaction (JEFF-3.1T worse than ENDF-B6.8)