

Status of TBM Neutronics Experiment

(Task TTMN-002)

Paola Batistoni

EFF/EAF Meeting NEA Data Bank, Paris, 28 December 2005

OUTLINE

- Experiment configuration (dimension, materials etc)
- Irradiation conditions
- Neutron source
- Measurement set up
- Measurements results
- Calculation results
- C/E comparison

The TBM – HCPB breeder unit mock-up in front of FNG target

TBM Mock-up

- External box Dimension 310 x 310 x 290 mm³ Thickness = 5 mm
- Box cover Dimension 310 x 290 mm² Thickness = 5 mm Provided with 4 holes
- Cover cap Provided with a sealing gasket to close the cover holes Not used during the experiment
- Material AISI-303 Density 7.954 g/cm³

CONFIGURATION

TBM Mock-up – Internal configuration

TBM Mock-up – Cassette configuration

 Li_2CO_3 powder : 7.5% ⁶Li + 92.5% ⁷Li Total amount : 4423.7 g / Density : 1.13 g/cm³

TBM Mock-up – Beryllium

Number of pieces : 11 (3 blocks + 8 capsules) Total amount : 37162.38 g / Density : 1.86 g/cm³ Composition (% weight):

Be 98.76	Si 0.013
O ₂ 0.88	AI 0.012
C 0.075	Ti 0.028
F 0.0009	Cr 0.025
Fe 0.16	Mg+Mn+Cu+Ni 0.05

Rear cassette

 The irradiation at FNG was carried out on 4,5,6,7 and 12 April 2005

(We had planned to conclude the irradiation on April 8 but the Pope died in the period and the funeral took place just on April 8. That day Rome was completely stopped, including ENEA).

- Irradiation hours where from about 10.00 to 17.00 every day
- The total amount of neutrons was 5.834 e15 \pm 3%

of which:

5.3252 e15 on 4-7 April 5.0875 e14 on 12 April (~ 9% of total)

• The T measurements have been referred to April 7, 2005 at 16.00 hour Status of TBM Neutronics Experiment

NEUTRON SOURCE

NEUTRON SOURCE

Horizontally, the block is perfectly symmetrical with respect to the neutron source

NEUTRON SOURCE

Vertically, the block is shifted upward by 3 mm with respect to the neutron source

NEUTRON SOURCE

MCNP analysis of Nb wire measurements (by Sara)

 N_b (ENEA) / α-det = **1.00** (MCNP simulation of foil with 3mm) N_b (JAEA) / α-det = **0.98** (MCNP simulation of wire w/o 3mm)

→ Source calibration confirmed well within ± 3%

TPR measurements by Li₂CO₃ pellets (nat. Li)

→ ENEA, TUD, (JAEA)

MEASUREMENTS

- Neutron flux in the central Be layer (ENEA)
- Neutron & γ-ray spectra behind the breeder unit (TUD/Rossendorf)

MEASUREMENTS

Slot size 3 mm x 13 mm

> Nb / 0.1 mm Au / 0.03 mm Al / 0.763 mm Ni / 0.254 mm

> > (air)

Activation measurements

• 4 foils where located simultaneously in each position as shown in the figure

•The reaction rates are given in the table (Maurizio Angelone)

 \bullet Errors include counting statistics, detector and FNG source calibration (±3%)

Measured reaction rates (10⁻²⁴activated nuclei/(nuclei • neutron).

Depth (mm)	Nb-93(n,2n)	±	Au-197(n,g)	±
0	1.29E-03	4.1%		
42	3.37E-04	4.3%	1.23E-02	4.2%
105	8.30E-05	4.3%	1.82E-02	4.2%
168	2.60E-05	4.3%	1.52E-02	4.2%
213	9.04E-06	4.5%	9.02E-03	4.2%
Depth (mm)	Al-27 (n,a)	±	Ni-58(n,p)	±
0				
42	8.42E-05	4.2%	3.50E-04	4.2%
105	2.20E-05	4.2%	1.18E-04	4.5%
168	7.48E-06	4.3%	4.98E-05	4.5%
213	2.88E-06	4.3%	2.05E-05	4.7%

Activation measurements : measured reaction rates

EFF/EAF Meeting, Paris, 28 November 2005

Preliminary analysis of activation measurements

- MCNP4c with EFF 2.4 (Sara Villari)
- Both IRDF-90 and IRDF-02 dosimetric cross sections

→ very good agreement

MEASUREMENTS

EFF/EAF Meeting, Paris, 28 November 2005

MEASUREMENTS

Tritium measurements

- Stack of 12 pellets
- ✓ diameter = 13 mm
- ✓ thickness = 1.93 mm
- \checkmark average mass = 405 mg
- \checkmark density = 1.58 g / cm³
- ✓ material = Li_2CO_3 powder
- ✓ (7.5% ⁶Li + 92.5% ⁷Li)
- dry preparation (no material added)

 \bullet The stack in enveloped in an aluminum foil with thickness 12.5 μm

• Errors include counting statistics, detector and FNG source calibration (±3%) Status of TBM Neutronics Experiment

Measurements of Tritium production rate (TPR)

• Experimental errors $\approx \pm 6\text{--}7$ %

• The T – specific actvities measured in ENEA compare rather well with those measured at JAERI (JAERI / ENEA \approx 1.08, well within combined

MEASUREMENTS

EFF/EAF Meeting, Paris, 28 November 2005

Statistical analysis of measurements

Best fits and prediction bounds (95% confidence) for measured specific activities

ANALYSIS

Preliminary analysis of TPR ENEA Positions (lower)

• Tritium production from Li-7(n,Tn) α and from Li-6(n,T) α in the four experimental positions

ANALYSIS

Preliminary analysis of TPR ENEA Positions (lower)

• MCNP-4C / Be-9 from EFF 2.4 / EFF 3 (Fe-56 from EFF 3, all others from 2.4)

ANALYSIS

Preliminary analysis of TPR ENEA Positions (lower)

• The T – specific actvities measured in ENEA compare rather well with those measured at JAERI (JAERI / ENEA $\,\approx\,1.08,$ well within combined errors)

EFF/EAF Meeting, Paris, 28 November 2005

New experiment 2007

TBM HCLL Mock-up (Pb-Li)

total width 450 mm + steel walls

In comparison with the HCPB experiment the T specific activity in the same experimental positions will be lower by a factor

6, 17, 38, 67

respectively, with the same neutron budget

- reduce the measured activity (from about 140 to 45 Bq/g)
- increasing the size of pellets (from 400 to 700 mg max)
- increase FNG neutron

budget

N. bricks: 2 (radial) x 11 (polidal) x 5 (toroidal = 110 Size of bricks: 172.5 (radial) x 35.9 (polidal) x 90 mm3 Weight of one brick: 5.7 kg Total weight: 630 kg

mock-up + margin -> at least 130 bricks / 750 kg