EFFDOC-987

TASK TTMN-002

Status of TBM neutronics experiments

Paola Batistoni ENEA – Fusion and Nuclear Technology Dept. – Frascati

JEFF/EFF Meeting, Paris, 20-21 November 2006

Validation of Tritium production rate calculations for EU breeder blanket concepts

- Helium Cooled Pebble Bed (HCPB) just completed → conclusions
 - ✓ Be as neutron multiplier
 - \checkmark Li₄SiO₄ as breeder material
- Helium Cooled Lithium Lead (HCLL) new benchmark experiment sarted → design
 ✓ LiPb eutectic alloy as breeder/multiplier

TTMN-002-D9TBM – HCPB benchmark experiments

Measurements

- Tritium production by Li₂CO₃ pellets (ENEA, TUD, (JAEA))
- Neutron flux in the central Be layer (ENEA)
- Neutron & γ-ray spectra behind the breeder unit (TUD/VKTA)

TTMN-002-D9TBM – HCPB benchmark experiments

 Neutron flux in the central Be layer by activation foils $\begin{array}{l} { { E_n > 10 \ MeV}: \ Nb-93(n,2n) } \\ { { E_n > 1 \ MeV}: \ Al-27(n,\alpha), Ni-58(n,p) } \\ { { E_n \sim 5 \ eV}: \ Au-197(n,\gamma) } \end{array}$

Activation measurements: the neutron flux attenuation is well predicted by EFF-3.05 & FENDL-2.1

Neutron & γ-ray spectra behind the breeder unit

K. Seidel et al. (EFFDOC-972), U. Fischer, D. Leichtle (EFFDOC-976)

EFF-3.05, FENDL-2.0/1 overestimate fast neut. flux by 10...20% and underestimate γ and slow neutron flux (<1keV) by 10...20%

P. Batistoni

EFF/EAF Meeting, Paris, 20-21 Nov. 2006

TBM – HCPB benchmark experiments

Tritium production measurements

TTMN-002-D9

12 Li₂CO₃ pellets (2mm thick) in each position to measure gradient across the ceramic breeder layer

Benchmark calculations with FNS-TOF Be Experiment Be slab 15.24 cm thick

Processing and Benchmarking of 9Be JEFF-3.1T Data (D. Leichtle EFFDOC-932)

Neutron angular fluxes at 66.8 deg

Energy Interval

Neutron angular fluxes at 0 deg

Energy Interval

>0.052 MeV

8.65E-01

8.46E-01

9 24F-01

9.23E-01

9.00E-01

All libraries underestimate angular fast neut. flux by 10...20% at 66.8 deg.

TTMN-002-D9

TBM – HCPB benchmark experiments

Experimental configuration very sensitive to angular distribution of elastic cross section (~2%/% sensitivity to <u>integral</u> elastic cross section)

Conclusions from the experiment:

1.T-production in reactor is OK (conservative)

but

2. angle distribution of scatterd neutrons not fully satisfactory yet

→ sensitivity to angular distribution

TTMN-002-D1

TBM-HCLL benchmark experiment

Design of the TBM - HCLL mock-up based on the reference EU design (LiPb, 15.7 at% nat-Li)

P. Batistoni

EFF/EAF Meeting, Paris, 20-21 Nov. 2006

Tritium production per unit volume vs depth:

Comparison between HCPB (only ceramic cassettes) and HCLL

TBM-HCLL benchmark experiment

The following T-measurement techniques have been proposed:

- 1. Li_2CO_3 pellets (ENEA TUD (JAEA)) (\emptyset =13 mm, few pellets, nat.Li & 90% enriched Li-6)
- LiF probes (TLD-100,600,700)
 + CR-39, BeO (TUD, AGH)

T-activity ~ 30 – 50 Bq/g for Y_{FNG} ~ 5x10¹⁵ n

TLD-600: ~10 Gy @5 cm, ~1 Gy @29 cm TLD-100: ~3 Bq @3 cm, ~0.2 Bq @25 cm

3. Diamond detector covered with 6-LiF (to be assessed by ENEA)

P. Batistoni

EFF/EAF Meeting, Paris, 20-21 Nov. 2006

TBM-HCLL benchmark experiment

Tritium produced in Li_2CO_3 from n+Li-6, n+Li-7 reactions

Use of different probes at each depth, with different Li-6 enrichment to discriminate Li-7 from Li-6 contributions

- The LiPB material has already been ordered by EFDA
- Due to a delay in the bid process, the material will be delivered to ENEA Frascati in 2007 (instead of Sept.2006)
- ENEA is preparing the additional materials and the detectors
- The design of measurements is in progress
- The experiment will be performed in 2007