

²³⁷Np XS experimental validation. Proposal for JEFF3 modification

David BERNARD, Alain SANTAMARINA

CEA Cadarache

NEA Headquarters, Issy-Les-Moulineaux JEFF/EFF Meeting: 22-23 May 2006

× Trends from Integral measurements:

- ^{× 237}Np sample oscillation in MINERVE (OSMOSE experiment)
- ***** Post Irradiation Experiment in UOx fuel; ²³⁸Pu prediction content
- Differential measurements:
 - available thermal capture XS

OSMOSE Experiment performed in MINERVE Facility

Reactivity variation due to sample oscillations in a thermal UO₂ spectrum (²³²Th, ^{233,234,236}U, ²³⁷Np, ^{238,239,240,241,242}Pu, ^{241,243}Am, ²⁴⁴Cm). Cylindrical column of pellets (ϕ =8.1mm; h=95mm) made of UO₂ matrix doped with Actinide.

Admixed masses of the two ²³⁷Np samples: 0.1g and 0.6g.

²³⁷Np Qualification Results

(C/E-1) in%	JEF-2.2	JEFF-3.1
²³⁷ Np (0.1g)	-9.9 ± 2.5	-14.4 ± 2.5
²³⁷ Np (0.6g)	-7.3 ± 1.9	-12.2 ± 1.9

Mean Value -8.6 ± 1.8 -13.3 ± 1.8

OSMOSE interpretation points out the need to increase ${}^{237}Np(n,\gamma)$ thermal and resonance integral of JEFF-3.1 by about $+13\%\pm2\%$ (1 σ)

Exact Perturbation Theory supplies the sensitive energy range for this modification.

Breakdown of the 237 Np poisoning worth in MINERVE is the following :40 are thermal neutron induced $0.eV < T_n < 0.25eV$ 30 are « epithermal » neutron induced $0.25eV < T_n < 0.625eV$ 1^{rst} resonance30 are « slowing-down » neutron induced $0.625eV < T_n < 20.MeV$

Chemical assays in French PWR-UOX assemblies

Chemical assays of ²³⁸Pu content in LWR-UOx fuel with low burnup (<20GWj/t, 5 independent fuel pins) show recurrent underestimation using JEFF3.1:

- $(C/E-1) = -1\% \pm 1\%$ for $(C/E-1) = -1\% \pm 3\%$ for $(C/E-1) = -8\% \pm 4\%$ for
- for ²³⁶U prediction for ²³⁷Np prediction for ²³⁸Pu prediction

This is mainly due to an underestimation of ${}^{237}Np(n,\gamma)$ cross-section by about 10% ±4% (1 σ) Evaluated Thermal Capture Cross-Sections:

JEF-2.2:	181b	
JEFF-3.1:	162b	
Experimental Capture Cross-Sections:		
KATOH (2003):*	142 ± 3 b	
JUROVA (1984):	158 ± 4 b	
KOBAYASHI (1993):	158 ± 3 b	
ESCH (2005):	168 ± 5 b	
TATTERSALL (1960):	169 ± 3 b	
SMITH (1957): (=BNL)	170 ± 22 b	
BROWN (1956):	172 ± 7 b	
WESTON (1981):	175 ± 5 b	
KOBAYASHI (2005):	181 ± 2 b	
EBERLE (1971):	184 ± 6 b	
SHCHERBAKOV (2005):	185 ± 7 b	
SCHUMAN (1969):	185 ± 12 b	
MINI-INCA (2003):	$180 \pm 5 \text{ b}$	(JEFDOC-1138)

*: the sample activation analysis using Wescott energetic decomposition with Cadmium cut-off is very doubtful due to:

• large uncertainty (15%) on gamma peak emission probability after Activation Product disintegration ($^{238}Np \rightarrow ^{238}Pu$)...

• cadmium energy cut-off (~ 0.50eV) is too close to resonance peak ($E_0=0.49eV$)

œ

Conclusion on ²³⁷Np(n, γ) evaluation in JEFF3.1

•Recent Integral trends are consistent with Differential measurements.

•Independant integral trends points out that an increase of JEFF-3.1 $^{237}Np(n,\gamma)$ thermal and epithermal cross sections is required:

$+12\% \pm 2\%$

in agreement with previous JEF2.2 evaluation