

Multi-group Covariance Matrix for the Resolved Resonance Range of Np-237

G. Noguere, D. Bernard and C. De Saint-Jean

CEA Cadarache, 13108 Saint Paul Les Durance, France

In the Resolved Resonance Range (RRR)...

1. Production of experimental covariance matrices

AGS method in CONRAD, a code to propagate uncertainty of cross section measurement data (see presentation of B. Habert)

2. Production of correlations between the parameters of the model

Models in the Resolved Resonance Range: Single-Level Breit Wigner, Multi-Level Breit Wigner, Reich-Moore, R-Matrix

3. Production of multi-group covariance matrices

Cross sections of interest (n,γ) , (n,n), (n,f), (n,tot)

Generating covariance with nuclear model

Description of the method

How to combine P and X to get consistent covariances?

Let us realize N Monte-Carlo simulation of \overrightarrow{x} . For each simulation k:

- we obtain $\overrightarrow{x_k}$
- we adjust the p_i parameters to obtain $\overrightarrow{p_k}$ (+ covariance matrix P_k)

$$\overrightarrow{p_k} = \mathbb{E}(\vec{p} \mid \vec{x} = \overrightarrow{x_k})$$

$$P_k = cov(p_i, p_i \mid \vec{x} = \overrightarrow{x_k})$$

• the final covariance is given by:

$$cov(p_i, p_j) = cov(p_{k,i}, p_{k,j}) + \mathbb{E}(P_k)$$

The MCFIT interface

Experimental data

Integral Trend:

2006 - D. Bernard et al. (OSMOSE) \Rightarrow **JEF/DOC-1144**

Thermal capture cross section:

2004 - A. Letourneau et al. (Mini-INCA) \Rightarrow 180 ± 5 b

Capture cross section:

1981 - L.W Weston and J.H. Todd (ORELA)

2005 - O. Scherbakov et al. (KURRI)

2005 - E.I. Esch et al. (LANSCE) \Rightarrow New normalisation of 1.07 \pm 0.03 !!!

Total cross section:

1999 - V.Gressier et al. (GELINA) $\Rightarrow <\Gamma_{\gamma}> = 40 \pm 2 \text{ meV}$

Fission widths (+ variance):

1984 - S.F. Mughabhab (BNL)

1993 - E. Dermendjiev et al. (JINR)

1998 - S.B. Borzakov et al. (JINR)

Resonance analysis and error propagation

MINERVE integral trends

⇒ **OSMOSE** experiment performed in the **MINERVE** facility of CEA/Cadarache

MINERVE is a low-power (<100W) pool reactor. Several lattices orresponding to different neutron spectra can be loaded in the central experimental cavity (800 pins), such as LWR UOx and MOx lattices.

- Reactivity variation due to sample oscillations in a thermal $U0_2$ spectrum.
- Cylindrical column of UO_2 pellets (ϕ =8.1 mm, h=95 mm) doped with Actinide.
- Admixed masses of the two 237 Np samples: 0.1g and 0.6 g

APOLLO2 calculations

Reactivity worth proportional to the thermal capture cross section

Determination of the negative resonances

Capture Cross Section

- ⇒ Large discrepencies between the various capture data sets
- ⇒ Data reported by Kobayashi are left out from this analysis

Average radiation width

How to propagate the error on the radiation widths that are set to the average value?

The average radiation width is calculated at each iteration.

 $\Gamma \gamma = 39.8 \pm 0.3 \text{ meV}$

Correlations between the resonance parameters $\{E_o, \Gamma_\gamma, \Gamma_n, \Gamma_f \ldots\}$

12 resonances \Rightarrow 47 resonance parameter (31 free and 16 sampled) Three transmission data \Rightarrow thickness and temperature were sampled Three capture data \Rightarrow normalisation and temperature were sampled

same $\sigma_{\gamma}^{\ th}$ used as « reference » \Rightarrow normalisation factors are correlated

Multigroup Covariance Matrix

Posterior « Explicite Covariance File » generated by the MCFIT interface can be used to produce Multigroupe Covariance Matrix (with NJOY)

Conclusions and Perspectives

- Resonance Shape Analysis coupled to Monte-Carlo calculations is able to produce realistic multigroup covariance matrices in the resolved resonance range with reasonable time calculations.
- Use the new resonance parameters from nTOF (C. Guerrero, PhD Thesis).
- Use the **Atlas of Neutron Resonances** in association with the sensitivity study performed by A. Lepretre.
- Need for new measurements of the thermal capture cross section ? (six NpO₂ samples available for activation measurements in the MINERVE reactor, Cf. experimental work of P. Leconte, CEA-Cadarache)