JEFF-3.1, ENDF/B-VII and JENDL-3.3 critical assemblies benchmarking with the Monte Carlo code TRIPOLI

J-Ch. Sublet, Y Peneliau and C. Jouanne¹

CEA Cadarache, DEN/DER/SPRC 13108 St Paul Lez Durance, France

¹ CEA Saclay, DEN/DM2S/SERMA 91191 Gif-sur-Yvette, France

Codes, libraries and benchmarks versions

- TRIPOLI-4.4.1, Monte Carlo, pointwise mode with PT's
 - NJOY-99.161(+) and CALENDF-2005 (build 69)
 - 2006, ENDF/B-VII/GP (393) with <u>252 PT's in the URR</u> and /Th (20)
 - 2005 JEFF-3.1/GP (381) with 140 PT's in the URR and /Th (9)
 - 2002, JENDL-3.3 (337) with 209 PT's in the URR (+ JEFF-3.1/Th)
 - International Handbook of Evaluated Criticality Benchmarks Experiment, ICSBEP September 2006 edition
 - Run on octo-pro SUN Blade workstation

Nuclear Data Libraries and Processing

NJOY-99.161(+)

- 1. Reconstruction at 0 K (RECONR)
- 2. Doppler Broadening at T K (BROADR)
 - 3. Treatment of Unresolved Range (UNRESR)

Free Gas thermalisation is done within TRIPOLI-4.4.1

4. Treatment of Thermal Neutron scattering data for materials (→ Thermr(+))

Modification: results in terms of equi-probable cosines instead of equi-probable angles (on 32 bins) MT's 221 and 222 hard coded

Pointwise cross section

CALENDF-2005

1. Reconstruction, Doppler, URR

Probability tables

NJOY-99.161(+) modules processing scheme

Evaluations

	Modules	Main parameters	Outputs
(+)10Y-99.161(+)	moder reconr broadr unresr moder thermr moder	err = 0.001 (0.1%) errthn = 0.001 nbin = 32 tol = 0.001	Thermal quantities pendf files emax = 4.95

Tripoli-4.4.1 library

Tripoli-4.4.1 Libraries

TRIPOLI-4.4.1 generates XDR portable binary and angular distribution files the first time it reads in a PENDF and and an ENDF file

Seven File Types are used :

- 1. Evaluation (ascii)
- 2. PENDF (binary)
- 3. Dictionary of cross sections (ascii)*
- 4. Binary XDR pointwise file*
- 5. Anisotropy file (ascii)*
- 6. Probability tables (ascii)
- 7. Thermal file (ascii)

Tests for evaluations :

ENDF-102 format

*: generated by TRIPOLI the first time it access the data file.

140 URR JEFF-3.1 252 URR ENDF/B-VII 209 URR JENDL-3.3

Normalization (angular and energetic distribution)

T4XS-4.4.1 library files

jeff3.neutron.H1_H2O.bcd jeff3.neutron.H1_H2O.bcd.therm jeff3.neutron.H1_H2O.bcd.therm.294 (only at the file temperature) jeff3.neutron.H1_H2O.bcd.aniso

file t4path.jeff3_1

/export/opt/CODE/TRIPOLI4.4.1/Env-4.4/jeff3_1.dictionary /export/opt/CODE/TRIPOLI4.4.1/mass_rmd.mas95 /export/opt/CODE/TRIPOLI4.4.1/JEFF31/Qfission /export/opt/CODE/TRIPOLI4.4.1/Mott_rutherford

Isotopic dictionary Atomic mass Fission Q values Mott - Rutherford electron-positrons cross section

TRIPOLI-4.4.1 dictionary

File jeff3_1.dictionary

-	1	>-	
(6		
	x	~	

/export/opt/CODE/TRIPOLI4.4.1/JEFF31/T4XS-4.4 390

AC225 8925	8900	-1	
AC226 8928	8900	-1	
AC227 8931	8900	-1	
AG107 4725	4700	-1	

jeff3.neutron.Ac225.bcd jeff3.neutron.Ac226.bcd jeff3.neutron.Ac227.bcd jeff3.neutron.Ag107.bcd

H1 125 100 -1 jeff3.neutron.H1.bcd

H1_H2O 125 100 1250001 jeff3.neutron.H1_H2O.bcd

U238	9237	9200	-1	jeff3.neutron.U238.bcd
V	2300	2300	-1	jeff3.neutron.V.bcd
**				
ZR95	4040	4000	-1	jeff3.neutron.Zr95.bcd
ZR96	4043	4000	-1	jeff3.neutron.Zr96.bcd

TRIPOLI-4.4.1 input sequence

static_tripoli4-4.4 -d hmf001c2 -s TABPROB -c
~/Env-4.4/t4path.jeff3_1 -p graphe -t bsd >& hmf001c2.out

static_tripoli4-4.4 -d lct006c13 -s NJOY -c ~/Env-4.4/t4path.jeff3_1 -o lct006c13.res >& lct006c13.out

TRIPOLI use BSD socket under the GNU C library Lesser General Public License and so can access any CPU on a network without the need of message passing libraries

```
File graphe in the ./ directory

PROCESS

4

process monitor static_tripoli4-4.4 cade

process scorer static_tripoli4-4.4 cade

process tache1 static_tripoli4-4.4 cade

process tache2 static_tripoli4-4.4 cade

GRAPH

scorer <-> tache1

scorer <-> tache2

FIN
```


TRIPOLI-4.4.1 program and multi-processing

Networking Services Library Functions xdr(3NSL)

NAME

xdr - library routines for external data representation **DESCRIPTION**

XDR routines allow C programmers to describe arbitrary data structures in a machine-independent fashion. Data for remote procedure calls (RPC) are transmitted using these routines.

```
Sockets Library Functions
```

```
socket(3SOCKET)
```

NAME

socket - create an endpoint for communication SYNOPSIS cc [flag ...] file ... -lsocket -lnsl [library ...] #include <sys/types.h> #include <sys/socket.h>

int socket(int domain, int type, int protocol); DESCRIPTION socket() creates an endpoint for communication and returns a descriptor.

Angular distribution

The angular distribution is computed by TRIPOLI-4.4.1 the first time a pendf file is accessed and the code require to be linked to the original endf file

The computed angular distribution is variable, file dependent and can contain up to 256 equally probable cosine bins

For the JEFF-3.1 U238 the angular distribution have been produced by the ECIS optical model code and tabulated in 91 bins from 0 to 180 degree. It is used as such by TRIPOLI-4.4.1

- Elastic and inelastic channels structures are preserved
- It is a much better representation than in Legendre coefficients

QA: MT=2 Angular distribution

TRIPOLI-4.4.1 & JEFF-3.1 + Probability Table

- The probability table have been produced by CALENDF-2005 in 11276 groups, with IPRECI =4 (~0.002 accuracy)
- They can be used by TRIPOLI-4.4.1:
 - in the Unresolved Resonance Range, for ALL isotopes with one
 - in the entire energy range, "PT sampling mode"
 - The CALENDF probability table order vary from group to group
 NOR vary from 1 to 11

NOR = table order; NPAR number of partials (four + (n.xn)) I = first negative moment

tables de probabilite pour 92-U -238 BRC,ORNL+ DIST-APR05 ZA=92238 MAT=9237 TEFF=294. 11276 groupes 1.0000E-5 1.9640E+7 IPRECI=4 IG 2148 ENG=2.237077E+5 2.241743E+5 NOR= 4 I= -3 NPAR=4 KP=2 101 18 4 0 1.094003-1 8.823080+0 8.196058+0 9.286816-2 1.266144-4 5.340267-1 4.538996-1 1.013560+1 9.196054+0 1.202600-1 1.263996-4 8.191575-1 4.029584-1 1.154104+1 1.023916+1 1.267343-1 1.261434-4 1.175020+01.326865+1 3.374166-2 1.417834+1 1.516819-1 1.255512-4 7.578883 - 1Probability Total Elastic Absorption Fission Inelastic

Pointwise cross section comparison: total

Pointwise cross section comparison : capture

CALENDF-NJOY comparison for U238 at 293.6K

COMPARISON ON CROSS SECTION MT= 101 (Abs.) in the Unresolved Resonance Range

	LIST (of Di	FFERE	ENCES GREATE	R THAN 0.0100			
\sim	CA		DF NJO	DY EINF	ESUP	SIGMA GENDR	SIGMA P.T.	DELTA
E	16	833	1136	1.995887E+04	2.012589E+04	5.525137E-01	5.446610E-01	0.014418
	17	832	1137	2.012589E+04	2.029431E+04	5.106446E-01	4.612736E-01	0.107032
	18	831	1138	2.029431E+04	2.046413E+04	5.092291E-01	5.336834E-01	-0.045822
	19	830	1139	2.046413E+04	2.063538E+04	5.078018E-01	5.269383E-01	-0.036316
	20	829	1140	2.063538E+04	2.080806E+04	5.063609E-01	4.876923E-01	0.038279
	21	828	1141	2.080806E+04	2.098218E+04	5.049111E-01	5.345675E-01	-0.055477
	22	826	1143	2.115777E+04	2.133482E+04	5.019718E-01	4.831857E-01	0.038880
	23	825	1144	2.133482E+04	2.151335E+04	5.004830E-01	5.126722E-01	-0.023776
	24	824	1145	2.151335E+04	2.169338E+04	4.989832E-01	5.114362E-01	-0.024349
	25	823	1146	2.169338E+04	2.187491E+04	4.974701E-01	5.028943E-01	<u>-0.010786</u> Min.
	26	822	1147	2.187491E+04	2.205796E+04	4.959444E-01	5.031609E-01	-0.014342
	27	821	1148	2.205796E+04	2.224255E+04	4.944059E-01	4.763083E-01	0.037996
	28	820	1149	2.224255E+04	2.242868E+04	4.928544E-01	5.078373E-01	-0.029503
	29	819	1150	2.242868E+04	2.261636E+04	4.912901E-01	5.222933E-01	-0.059360
	30	817	1152	2.280562E+04	2.299646E+04	4.881219E-01	4.805247E-01	0.015810
	31	816	1153	2.299646E+04	2.318890E+04	4.865180E-01	4.499056E-01	0.081378
	32	815	1154	2.318890E+04	2.338295E+04	4.849005E-01	5.166270E-01	-0.061411
	33	814	1155	2.338295E+04	2.357862E+04	4.832695E-01	4.912039E-01	-0.016153
	34	813	1156	2.357862E+04	2.377593E+04	4.816249E-01	4.320517E-01	<u>0.114739</u> Max
	35	811	1158	2.397489E+04	2.417552E+04	4.782943E-01	4.857236E-01	-0.015295
	36	810	1159	2.417552E+04	2.437782E+04	4.766081E-01	4.351625E-01	0.095242

ICSBEP Leu-Comp-Therm-006 (JAERI) -007 (Valduc)

	Code Library		Experimen	t	Tripoli-4.4 JEFF-3.1 Calculation	.1	Tripoli-4.4 ENDF/B-VII Calculation	.1	Tripoli-4.4 JENDL-3.3 Calculation	.1 I
202			Keff	Unc.	Kcalc	S.D.	Kcalc	S.D.	Kcalc	S.D.
E	ICSBEP	Name								
					Th	ermal ra	nge			
	LCT-006									
		c-1	1.0000	200	0.99998	12	1.00058	12	0.99834	12
		c-3	1.0000	200	1.00051	9	1.00116	9	0.99866	9
		c-4	1.0000	200	0.99987	12	1.00083	12	0.99823	12
		c-8	1.0000	200	1.00059	12	1.00080	12	0.99837	12
		c-9	1.0000	200	1.00011	12	1.00076	12	0.99837	12
		c-13	1.0000	200	0.99994	12	1.00024	12	0.99810	12
		c-14	1.0000	200	0.99958	12	1.00050	12	0.99814	12
		c-18	1.0000	200	0.99978	12	1.00029	12	0.99782	12
	Average				1.00005		1.00065		0.99825	
	Δ (C-E)				5		65		-175	
	LCT-007									
	Valduc	c-1	1.0000	160	0.99780	10	0.99861	12	0.99653	10
		c-2	1.0000	160	0.99932	10	0.99993	14	0.99833	10
		c-3	1.0000	160	0.99749	10	0.99837	14	0.99720	10
		c-5	1.0000	160	0.99753	10	0.99828	14	0.99619	10
		c-6	1.0000	160	0.99915	10	0.99971	14	0.99845	10
		c-7	1.0000	160	0.99843	10	0.99963	14	0.99793	10
	Average				0.99829		0.99909		0.99744	
	Δ (C-E)				-171		-91		-256	

CADARACHE

U235

 $|\Delta k| > \sigma \exp \lambda$

U235 18

ICSBEP Leu-Comp-Therm-007 (Valduc)

Case 1

22 x 22 rods; 484 rods

pitch = 1.26 cm

critical water height = 90.69 cm

Grid plate:

60 x 60 cm, 0.25 cm thick

Case 4

(Case 1 grid, with one rod each 2 holes) 18 x 17 rods; 306 rods pitch = 1.26 x 2 = 2.52 cmcritical water height = 79.85 cm

Case 2

16 x 17 rods; 272 rods pitch = 1.60 cmcritical water height = 73.53 cm Grid plate: 60 x 60 cm, 0.25 cm thick

Case 2 16 x 17 x 1 Pitch = 1.6

0000000000000000000000

Case 2 (5 x 15 x 1 Ditch - 2 1

Case 5 14 rods per side 547 rods triangular pitch 1.35 cm critical water height = 60.93 cm Grid plate: 60 x 60 cm. 0.25 cm thick

Case 6

10 rods per side 271 rods

Grid plate:

triangular pitch 1.72 cm

72 x 72 cm. 0.25 cm thick

critical water height = 68.06 cm

10 x 19 x 1 Pitch = 1.72

	Gase 3 T5 X T5 X T FIGH = 2.1	
	0000000000000000	Case 7
Case 3	000000000000000000000000000000000000000	0 1
15 15 1 225 1		9 rods per side
15 x 15 rods; 225 rods	000000000000000	217 rods
pitch = 2.10 cm	0000000000000000	4
	00000000000000000	triangular pitch
critical water height = 77.98 cm	00000000000000000	critical water he
	00000000000000000	critical water ne
Grid plate:	000000000000000000000000000000000000000	Grid plate:
-	000000000000000000	Grid plate.
60 x 60, 0.25 cm thick	0000000000000000	92.5 x 92.5 cm
	000000000000000000000000000000000000000	

Case 7
9 rods per side
217 rods
triangular pitch 2.26 cm
critical water height = 79.50 cm
Grid plate:
92.5 x 92.5 cm, 0.25 cm thick

CADARACHE

ICSBEP leu-comp-therm, continued

	Code Library		Experimen	t	Tripoli-4.4 JEFF-3.1 Calculation	.1	Tripoli-4.4 ENDF/B-VII Calculation	.1 I	Tripoli-4.4 JENDL-3.3 Calculation	.1 I
r C C			Keff	Unc.	Kcalc	S.D.	Kcalc	S.D.	Kcalc	S.D.
	ICSBEP	Name								
					Th	ermal ra	nge			
	LCT-039									
	Valduc	c-1	1.0000	140	0.99761	12	0.99824	14	0.99615	12
		c-4	1.0000	140	0.99665	12	0.99765	14	0.99525	12
		c-6	1.0000	140	0.99767	12	0.99801	14	0.99666	12
	Average				0.99731		0.99797		0.99602	
	Δ (C-E)				-269		-203		-398	
	Hiss		1.0000	600	1.01003	13	1.01107	13	1.00580	13
	Δ (С-Е)				1003		1107		580	
	Topsy-NI		1.0000	400	1.00201	17	1.00740	17	1.00593	17
	Δ (С-Е)				201		740		593	
	Topsy-UR	2	1.0000	400	1.00687	16	1.00747	16	1.00454	16
	Δ (С-Е)				687		747		454	
	LCT-027									
	Pb refl.	c-1	1.0000	110	1.00757	12	1.00340	12	1.01003	12
	Δ (С-Е)				757		340		1003	
	LCT-10									
	Pb refl.	c-1	1.0000	210	1.00697	12	1.00597	12	1.00768	12
	Δ (С-Е)				697		597		768	
	Pb refl.	c-20	1.0000	280	1.00538	12	1.00531	12	1.00536	12
	Δ (C-E)				538		531		536	

CADARACHE

C

 $|\Delta k| > \sigma \exp$.

U235, H1, O16, Pb208

PST = Pu-Solution-Thermal spectrum, Mix Compound

Code Library				Tripoli-4.4.1 Tripoli-4.4 JEFF-3.1 ENDF/B-VI			.1 Tripoli-4.4.1 JENDL-3.3		
	Experiment		Calculation		Calculation	1	Calculation		
		Keff	Unc.	Kcalc	S.D.	Kcalc	S.D.	Kcalc	S.D.
ICSBEP I	Name								
				The	ermal ra	nge			
PST-009 4	48" sphe	re, Alvesse	l, bare						
9.54 gPu/l o	c-2A	1.0003	330	1.01893	11	1.01923	11	1.02244	11
9.46 gPu/l o	c-3A	1.0003	330	1.01927	11	1.01928	11	1.02224	11
Average				1.01910		1.01926		1.02234	
Δ (С-Е)				1880		1896		2204	
MCT-004 I	Mox 3.0 [°]	1 wt% PuO2-	UO2 fuel	rods,					
2.4 w/f ratio	c-1	1.0000	460	0.99683	13	0.99752	13	0.99760	13
2.9 w/f rati	c-4	1.0000	390	0.99707	13	0.99772	14	0.99795	13
4.2 w/f ratio	c-7	1.0000	400	0.99779	13	0.99850	13	0.99822	13
5.5 w/f ratio	c-10	1.0000	510	0.99783	13	0.99861	13	0.99899	13
Average				0.99738		0.99809		0.99819	
∆ (С-Е)		_		-262		-191		-181	
PST-001 ⁴	11.5" spl	here, water	reflected						
73.0 aPu/l a	c-1	1.0000	500	1.00186	12	1.00622	12	1.00874	12
96.0 gPu/l o	c-2	1.0000	500	1.00356	12	1.00829	12	1.01054	12
119.0 gPu/o	c-3	1.0000	500	1.00665	12	1.01115	12	1.01305	12
132.0 gPu/ c	c-4	1.0000	500	1.00104	12	1.00526	12	1.00712	12
140.0 gPu/o	c-5	1.0000	500	1.00505	17	1.00950	12	1.01117	12
268.7 gPu/o	c-6	1.0000	500	1.00681	12	1.01057	12	1.01237	12
Average				1.00416		1.00850		1.01050	
Δ (C-E)				416		850		1050	

œ

 $CADARACHE |\Delta k| > \sigma \exp.$

Pu239

PST = Plutonium-Solution-Thermal spectrum

			Tripoli-4.4.	1	Tripoli-4.4.	1	Tripoli-4.4	.1
			JEFF-3.1		ENDF/B-VII		JENDL-3.3	
_	Experimen	t	Calculation		Calculation		Calculation	1
	Keff	Unc.	Kcalc	S.D.	Kcalc	S.D.	Kcalc	S.D.
me								
			The	ermal ra	nge			
&18" sp	here, bare							
-1	1.0000	520	1.00669	13	1.01037	12	1.01408	13
-5	1.0000	520	1.00337	13	1.00668	12	1.01041	13
			1.00503		1.00853		1.01225	
			503		853		1225	
-1	1.0000	520	0.99134	13	0.99450	12	0.99893	13
-6	1.0000	520	0.99708	13	1.00049	12	1.00435	13
			0.99421		0.99750		1.00164	
			-579		-250		164	
6-mm c	yl, in air							
1	0.9980	400	1.00169	12	1.00510	12	1.00823	12
2	0.9980	400	1.00157	12	1.00528	12	1.00774	12
			1.00163		1.00519		1.00799	
			363		719		999	
1	0.9965	520	0.99419	12	0.99747	12	1.00037	12
			-231		97		386	
	1.4.1.1		Pu239		Pu239		Pu239	
	$ \Delta \mathbf{k} > \sigma e \mathbf{x}$	xp.	Pu24x		Pu24x		Pu24x	
	me &18" sp -1 -5 -1 -6 6-mm c	Experimen Keff me Image: Constraint of the second seco	Experiment Keff Unc. me I I 418" sp Fre, bare I -1 1.0000 520 -5 1.0000 520 -1 1.0000 520 -5 1.0000 520 -6 1.0000 520 -1 0.000 520 -1 0.000 520 -6 1.0000 520 -6 1.0000 520 -1 0.000 520 -6 1.0000 520 -1 0.000 520 -1 0.000 520 -1 0.000 520 -5 0.9980 400 -1 0.9965 520 -1 0.9965 520	$\begin{array}{ $	$\begin{tabular}{ $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ $

ICSBEP water criticality benchmarks with U and Pu

Comparison between JEF-2.2 and JEFF-3.1 **H and H in H₂0** evaluations with JEFF-3.1 as base library

~ ±100 pcm swing

Name	Composition	Exp Res.	Old Res.	New Res.	Δ
HST011_C01	$UO_2F_2 + H_2O$	1.0000 ±(200)	1.00552 ±(20)	1.00549±(20)	-3
HST011_C02	$UO_2F_2 + H_2O$	1.0000 ±(200)	1.00235 ±(20	1.00180 ±(19)	-55
HSTO12_c01	$UO_2F_2 + H_2O$	0.9999 ±(580)	1.00228 ±(20)	1.00189 ±(20)	-39
PST001_c01_sph	Sol Pu. Nit.+H ₂ O	1.0000 ±(500)	1.00401 ±(19)	1.00494 ±(19)	93
PST004_C02	Sol Pu. Nit. H ₂ O	1.0000 ±(470)	0.99892 ±(19)	0.99854 ±(19)	-38
LCT006_c01	$UO_2 + H_2O$	1.0000 ±(200)	1.00164 ±(20)	1.00250 ±(20)	86
LCT007_c01	$UO_2 + H_2O$	1.0000 ±(200)	1.00162 ±(20)	1.00250 ±(20)	88
MCT004_c01	$UPu + H_2O$	1.0000 ±(460)	0.99615 ±(20)	0.99688 ±(19)	73
HMF004_c01_1D	U _{enrich.} +H ₂ O	0.9985 ±	0.99854 ±(21)	0.99845 ±(21)	-9
PMF011_c01	Pu +H ₂ O	1.0000 ±(100)	0.99760 ±(20)	0.99730 ±(20)	-30

CADARACHE

Well within the uncertainty bands

Thermal, Intermediate and Fast benchmarks spectraFBR300 Kev

Metal-Fast - Intermediate spectra

	Code Library				Tripoli-4.4.1 JEFF-3.1		Tripoli-4.4.1 ENDF/B-VII		Tripoli-4.4.1 JENDL-3.3	
			Experiment		Calculation	1	Calculation	1	Calculation	n a a
			Keff	Unc.	Kcalc	S.D.	Kcalc	S.D.	Kcalc	S.D.
(A)	ICSBEP	Name								
\sim						Fast rang	e			
	IMF-007									
	Big Ten	deta.	1.0045	70	0.99863	13	1.00503	13	1.01040	13
		simp.	1.0045	70	0.99790	13	1.00417	13	1.00950	13
	Δ (С-Е)				-623		10		545	
		t.z.h.	0.9948	130	0.98830	12	0.99534	12	1.00188	13
	Δ (C-E)				-650		54		708	
	IMF-012									
	ZPR(16%)	c-1	1.0007	270	1.00261	13	1.00408	13	1.00618	13
	Δ (C-E)				191		338		548	
	IMF-10									
	ZPR-U9	c-1	0.9954	240	0.99181	12	0.99688	12	1.00373	13
	Δ (C-E)				-359		148		833	
	IMF-002									
		c-1	1.0000	300	0.99216	10	0.99923	10	1.00228	10
	Δ (C-E)	•			-784		-77		228	
	IMF-001									
	Jemima	c-2	1 0000	120	0 99837	12	0 99902	12	1 00702	12
	oomina	c-3	1,0000	100	0 99741	12	1 00080	12	1.00526	12
		c-4	1.0000	100	0.00741	12	1.00000	12	1.00625	12
	Avorago	0 4	1.0000	100	0.00000	12	1.00100	12	1.00020	12
					101		1.00043		619	
	Δ (C-E)				-191		43		010	I
C 1 D 1			A1 S		U238				U238	25
CADAR	ACHE		$ \Delta \mathbf{K} > \sigma \exp \mathbf{I}$		U235				U235	

High enriched -Metal-Fast-

Code Library			Tripoli-4.4.1 JEFF-3.1			Tripoli-4.4.1 ENDF/B-VII		Tripoli-4.4.1 JENDL-3.3	
\sim		Experiment		Calculation		Calculation		Calculation	l
		Keff	Unc.	Kcalc	S.D.	Kcalc	S.D.	Kcalc	S.D.
ICSBEP	Name								
				F	ast rang	6			
HMF-028									
Flattop-25		1.0000	300	1.00210	11	1.00321	11	1.00385	11
Δ (C-E)				210		321		175	
HMF-001									
Godiva	c1	1.0000	100	0.99645	11	1.00020	11	1.00717	11
	c2	1.0000	100	0.99660	11	1.00027	11	1.00723	11
Average				0.99653		1.00023		1.00720	
Δ (C-E)				-347		23		720	
PMF-001									
Jezebel	c-1	1.0000	200	1.00025	15	0.99963	15	0.99759	15
Δ (C-E)				25		-37		-241	
PMF-002									
Jez. 240	c-1	1.0000	200	1.00430	15	0.99986	15	1.00118	15
Δ (C-E)				430		-14		118	
- (° -)								11235	
				UZ35					
				Pu240		$ \Delta \mathbf{k} > \sigma \exp (\mathbf{k})$		Pu239	

HST=High Enriched U-Solution-Thermal spectrum

Code Library		Experiment	t	Tripoli-4.4.1 JEFF-3.1 Calculation		Tripoli-4.4.1 ENDF/B-VII Calculation		Tripoli-4.4 JENDL-3.3 Calculation	.1
		Keff	Unc.	Kcalc	S.D.	Kcalc	S.D.	Kcalc	S.D.
ICSBEP	Name								
					Solution	IS			
HST001									
Mid	c-1	1.0004	600	0.99908	16	0.99907	16	1.00026	16
Leakage	c-2	1.0021	720	0.99666	16	0.99700	17	0.99772	16
Nitrate	c-3	1.0003	350	1.00237	16	1.00208	17	1.00331	16
	c-4	1.0008	530	0.99929	16	0.99865	16	1.00002	16
	c-5	1.0001	490	0.99974	16	0.99925	16	1.00072	16
	c-6	1.0002	460	1.00314	16	1.00227	16	1.00406	16
	c-7	1.0008	400	0.99882	16	0.99853	16	0.99934	16
	c-8	0.9998	380	0.99890	16	0.99840	16	0.99957	16
	c-9	1.0008	540	0.99483	16	0.99480	16	0.99546	16
Average		1.0006		0.99920		0.99890		1.00005	
Δ (C-E)				-139		-169		-54	
HST009									
High	c-1	0.9990	430	1.00064	19	1.00238	17	1.00322	16
Leakage	c-2	1.0000	390	1.00144	16	1.00293	16	1.00309	16
Fluoride	c-3	1.0000	360	1.00099	16	1.00251	16	1.00191	16
	c-4	0.9986	350	0.99559	16	0.99700	16	0.99660	16
Average		0.9994		0.99966		1.00120		1.00120	
Δ (C-E)				26		180		180	
HST010									
Fluoride	c-1	1.0000	290	1.00104	16	1.00148	16	1.00192	16
	c-2	1.0000	290	1.00122	16	1.00221	16	1.00224	16
	c-3	1.0000	290	0.99872	16	0.99953	16	0.99973	16
	c-4	0.9992	290	0.99666	16	0.99773	16	0.99769	16
Average		0.9998		0.99941		1.00024		1.00039	
Δ (С-Е)				-39		44		59	

œ

CADARACHE

 $|\Delta k| > \sigma \exp$.

HST=High Enriched U-Solution-Thermal spectrum

Code				Tripoli-4.4.	1	Tripoli-4.4	.1	Tripoli-4.4.	1	
Library				JEFF-3.1		ENDF/B-VII		JENDL-3.3		
		Experiment		Calculation		Calculation		Calculation		
		Keff	Unc.	Kcalc	S.D.	Kcalc	S.D.	Kcalc	S.D.	
ICSBEP	Name									
					Solutior	าร				
HST011										
Fluoride	c-1	1.0000	230	1.00473	16	1.00524	16	1.00595	16	
	c-2	1.0000	230	1.00062	16	1.00110	16	1.00167	16	
Average				1.00267		1.00317		1.00381		
Δ (С-Е)				267		317		381		
HST012										
	c-1	0.9999	580	1.00115	16	1.00096	16	1.00193	15	
Δ (С-Е)				125		106		203		
HST013										
ORNL-1	c-1	1.0012	260	0.99880	16	0.99906	16	0.99982	16	
ORNL-2	c-2	1.0007	360	0.99791	16	0.99766	16	1.00167	16	
ORNL-3	c-3	1.0003	360	0.99416	16	0.99411	16	0.99519	16	
ORNL-4	c-4	1.0003	360	0.99591	16	0.99593	16	0.99702	16	
Average		1.0006		0.99669		0.99669		0.99843		
Δ (С-Е)				-393		-394		-220		
HST018										
Nitrate	c-1	1.0000	340	0.98956	16	0.99093	16	0.99071	16	
Gd	c-2	1.0000	460	0.98503	16	0.98570	16	0.98620	16	
	c-3	1.0000	420	0.98832	16	0.98949	16	0.98969	16	
Average				0.98764		0.98871		0.98887		
Δ (C-E)				-1236		-1129		-1113		
HST019										
	c-1	1.0000	410	0.99691	16	0.99835	17	0.99846	16	
Δ (C-E)				-309		-165		-154		
HST032										
ORNL-10		1.0015	260	0.99881	16	0.99939	16	0.99990	16	
Δ (C-E)				-269		-211		-160		

Gadolinium

CADARACHE

 $|\Delta k| > \sigma \exp$.

Comparison Between MCNP5 (LANL) and Tripoli 4.4.1 (Sublet)

- Excellent agreement is observed between MCNP5 and Tripoli eigenvalues for a variety of benchmarks.
 - Previous differences in LEU-COMP-THERM-006 have been attributed to slightly different fuel compositions.
 - Previous differences in selected HEU-SOL-THERM-001 eigenvalues are attributed to different normalizations.

Mcnp4c3 and MCNP5 use discrete thermal sampling versus the new continuous MCNP5-Bob, (or MCNP(X)2.6c) -20 to +30, (50) pcm swing on HST,LST and LCT's

UNCLASSIFIED

Comparison MCNP5 & TRIPOLI-4.4.1, 60 ICSBEP

New thermal sampling

CADARACHE

Conclusions (Monte Carlo)

TRIPOLI-4.4 – MCNP5 & JEFF-3.1 - ENDF/B-VII - JENDL-3.3

The keff's prediction do **always** agree, even in the thermal range were the differences are within the experimental uncertainties if ALL (option, geometry, number density ...) is identical

An excellent agreement exists in the fast range, when using Monte Carlo codes with CALENDF or PURR probability tables and the best data files; what about the deterministic codes ??

One cannot help noticing numerous and large compensation effects, arising not only from the major isotopes such as U's, Pu's but also from the minor ones including the structural isotopes

Times as come for the Monte Carlo benchmarking to probe further the basic data: angular distribution, emitted spectra, neutron spectrum and cross section ratio

Conclusions (libraries)

• The striking overall improvement of the predictions and simulation for many nuclear technologies (fission reactors, accelerator, transmutation, fusion technology, medicine, earth exploration, astrophysics, passive interrogation techniques etc..) has been the result of concerted, usually voluntary efforts on all the general but also the special purpose files

• The results presented show that while the most recent library ENDF/B-VII, which benefited from the timely development of JENDL-3.3 and JEFF-3.1, produces better overall results, it suggest clearly also that improvements are still needed

- Foreseen (majors) improvements (JEFF-3.1):
 - Thermal-epithermal: ^{239,241}Pu,²³⁵U, Pb's
 - Fast, ²³⁸U, ²³⁵U, ²⁴⁰Pu
 - Overall, Gd's, Hf's

This list is not exhaustive and will be impacted by the low Z data of ¹H, ¹⁶O, ¹⁴N, etc...that differs from one library to another...

Conclusions

• The improvement does not always has to involve directly the cross sections themselves but also their angular distribution, particles emitted spectra, and other nuclear data such as yields, Q-values, emitted particles numbers and kinds, half-lives and decay data and schemes.

• The new JEFF-3.1, ENDF/B-VII and JENDL-3.3 libraries respectively produced by a handful of EU, US and Japanese laboratories represent common achievements. They all benefited from appreciable, substantial and timely input from the international nuclear data community that all those laboratories together represent so well.

• For the first time considerable efforts have been dedicated to the verification, processing and validation of all libraries prior to their open releases.

U-238 above URR capture region

CADARACHE

Incident Energy (MeV)