

Correction of the $^{16}O(n,\alpha_0)$ cross section below 6 MeV for JEFF-3.2 β

G. Noguere, O. Bouland, D. Bernard and A. Santamarina

CEA Cadarache, 13108 Saint Paul Les Durance, France

G. Giorginis

EC-JRC-IRMM, B-2440 Geel, Belgium

Previous evaluations \Rightarrow based on the $\sigma(n,\alpha)$ cross section obtained by reciprocity from data reported by Bair and Haas (1973)

Bair and Haas \Rightarrow absolute uncertainties are large ($\pm 20\%$)

Johnson et al. \Rightarrow R-Matrix analysis of the (n,α) cross section with data reported by Blair, ORNL-4659, but reduced by 20 % due to new analysis.

Sayer et al. \Rightarrow R-Matrix analysis with data from Blair without correction

Correction normalisation (20%) not included in JEFF-3.1 (=ENDF\B-VI.8)

Related references

New request quidelines

NEA Nuclear Data High Priority Request List, HPRL

New request template

7.11.33.33.33.33			3		
Request ID 2			Status of the request	High Priority request	
Target	Reaction and process	Incident Energy	Secondary energy or angle	Requested (1 sigma) Accuracy	Covariance
8-0-16	(n,a) SIG	2.5 MeV-10.0 MeV		5%	Υ
Field	Subfield	Date Request created	Date Request accepted	Ongoing action	
Fission	LWR, Material recycling	21-SEP-05	11-MAY-06	Υ	

Send a comment on this request to NEA.

Requester: Mr. Arnaud COURCELLE at CADARACHE, FR

Search

Email: arnaud.courcelle@cea.fr

HPBI -Main

S. Harrisopulos et al. Phys. Rev. C72, 062801 (2005)

Absolute cross section of the $^{13}\text{C}(\alpha,n)^{16}\text{O}$ reaction has been measured at $E_{\alpha}=0.8$ to 8.0 MeV with an overall accuracy of 4%.

☑ G. Giorginis et al., Int. Conf. On Nuclear Data for Science and Technology, 2007

Cross section values for $^{16}O(n,\alpha)$ reaction were measured at the VdG facility of the IRMM in the energy range 3.95-9.0 MeV with a novel spectrometer using signal digitisation technique. The overall accuracy is close to 5%.

I Low energy range 4.0 − 4.5 MeV

<u>First approximation</u>, data from Giorginis-Khryachkov can be used without taking into account the resolution broadening. Assuming that ENDF evaluation is free of energy resolution effects, JEFF-3.1 can be normalised to data presented at ND2007.

At 4.3 MeV σ (JEFF-3.1) = 163 mbarns and σ (IRMM) = 111 mbarns \Rightarrow N = 0.68

⇒ No resonance parameters in the evaluated nuclear data file

⇒ Prior parameters reported by R.O. Sayer, L.C. Leal, N.M. Larson, R.R. Spencer and R.Q. Wright, "R-Matrix Evaluation of O-16 Neutron Cross Sections up to 6.3 meV", ORNL/TM-2000/212 (2000)

First approximation: prelim analysis of the data reported by Harissopulos (inverse reaction) give results consistent with the correction suggested by the preliminary data reported by Giorginis-Khryachkov

Had-hoc normalisation of previous evaluated cross section cannot be used over a wide energy range.

Above 4.4 MeV, accurate modelling of the energy resolution is needed to describe narrow resonances.

Experimental data ...

overall good agreement between JEFF-3.2beta and experimental data

⇒ however, old data sets characterized by large experimental uncertainties evaluation from Johnson is still 10% higher

⇒ data reported by Bair and Haas are "definitely" wrong only two data sets have to be used for new evaluation

⇒ inverse reaction from Harrisopulos + data reported by Giorginis-Khryachkov

Below 6 MeV:

- **JEFF-3.2beta** = **ENDF\B-VII.0** by using corrections suggested by G. Giorginis
- ENDF\B-VII.0 obtained from normalisation of ENDF\B-VI by P.R. Page using data reported by Harissopulos.

Above 6 MeV:

- ENDF\B-VII.0 normalized with old data reported by **Davis in 1963**
- JEFF-3.1 (=ENDF\B-VI) provides a better compromise

Below 6 MeV

⇒ Excellent agreement between all the evaluation around 4.2 MeV

Above 6 MeV

⇒ Prelim IRMM results suggest to increase JEFF-3.1 (=ENDF\B-VI.8)

New evaluation

⇒ Owing to the large variation of the normalization coefficient, new R-matrix analysis is needed

IRMM data provide a consistent description of the (n,α) cross section up to 8.5 MeV.