

Update of Zirconium Evaluations for JEFF-3.2(beta)

G. Noguere, D. Bernard and A. Santamarina

CEA Cadarache, 13108 Saint Paul Les Durance, France

D. Bernard et al., JEF/DOC-1226, « Needs for Zr and O16 cross-section Improvements »

Overestimation of the capture resonance integral of the natural zirconium in JEFF-3.1

Natural Zr \Rightarrow ⁹⁰Zr (51.45%), ⁹¹Zr (11.22%), ⁹²Zr(17.15%), ⁹⁴Zr(17.38%), ⁹⁶Zr(2.8%)

Corrections for JEFF-3.2 β :

 \boxtimes ⁹¹Zr \Rightarrow new parameters for the resonance at 292.4 eV

These two modifications lead to:

Decrease of the thermal capture cross section + capture resonance integral of the natural element in accordance with the value recommended in the « Atlas of Neutron Resonances »

JEFF-3.1 ⇒ JENDL-3.3 without improved description of the Resolved Resonance Range

WPEC Subgroup 23

Creation of International Library of Neutron Cross-Section Evaluations for the Bulk of Fission Products

SG23 Library Identification: International Fission Product Library (IFPL), NLIB=21 (NLIB assigned by A. Mengoni, IAEA, August 9, 2005).

SG23 Membership: 5 projects, 14 members

Chairman	P. Oblozinsky (ENDF project)				
Monitor	R. Jacqmin (JEFF project)				
ENDF	ENDF C. Dunford (BNL), M. Herman (BNL), S. Mughabghab (BNL), M. Dunn (ORNL)				
JEFF	C. Dean (Winfrith), A. Trkov (IAEA)				
JENDL	T. Nakagawa (JAERI), K. Shibata (JAERI)				
BROND	BROND V. Pronyaev (IPPE Obninsk), A.V. Ignatyuk (IPPE Obninsk)				
CENDL	Ge Zhigang (CNDC), Chen Guochang (CNDC)				

Library partial (March - August 2005) \Rightarrow ENDF\B-VII.0

Zr-90: resonance parameters from BROND + new evaluation with EMPIRE Zr-91, 92, 94, 96: resonance parameters from "Atlas of Neutron Resonances" + JENDL-3.3

SG23 Library complete (January 2006) \Rightarrow used in this work for JEFF-3.2beta

See NNDC web site: http://www.nndc.bnl.gov/sg23/

- $Zr-91 \Rightarrow loss of neutrons heavily influenced by neutron capture by the 292.4 eV resonance$
- Zr-96 ⇒ Even though the Zr-96 isotope is present to only 2.8% in natural Zr, capture in the 301.1 eV resonance is also important.

- Problem with the resonance shape analysis of the doublet (91Zr+ 96Zr)
- Last measurements give inconsistent sets of resonance parameters

E Coceva (1979)

 \Rightarrow new analysis of the data reported by A. Brusegan (IRMM) with data reported by Musgrove (Harwell) suggests to increase the Zr-91 neutron width value to 634±17 meV (old value = 612 ± 6 meV)

■ Salah (1985)

- ⇒ problems with isotopic composition of natural Zr sample
- \Rightarrow Zr-91 content was taken to 11.32%, representative isotopic composition is 11.22(5)%
- \Rightarrow Zr-96 content was taken to 2.46%, representative isotopic composition is 2.80(9)%

■ Leinweber (2000)

- ⇒ gives a Zr-96 radiation width lower than previous results
- ⇒ problems with the capture detector efficiency for Zr-96 (hard gamma-ray spectrum)
- ⇒ REFIT calculations performed with an effective abundance (8% lower)
- ⇒ problems with resolution function ("bounce target")?

Zr-91

average value of results found in the litterature

$$\langle \Gamma \gamma \rangle = 129 \pm 8 \text{ meV } \langle \Gamma n \rangle = 637 \pm 4 \text{ meV}$$

suggests to decrease the radiation width in JEFF-3.1 $(\Gamma \gamma = 170 \text{ meV})$

Mughabghab recommend RPI results

Zr-96

average value of results found in the littérature

$$<$$
A $\gamma > = 109 \pm 8 \text{ meV} <$ **$\Gamma n > = 212 \pm 7 \text{ meV}$**

correction of Salah results for the Zr-96 content gives $\langle A\gamma \rangle \cong 109 \text{ meV}$

average radiation width from <A $\gamma>$ and < Γ n> is close to < $\Gamma\gamma> \cong 225$ meV

Capture resonance integral for JEFF-3.2beta ⇒ decreased by 10%

Thermal cross section

Often used to accommodate σ_0 of natural Zr !!! Zr-90 thermal capture cross section could have non-negligible impact on integral trends

-	1	1	~
(\leftarrow	_	
	人	~	1

		A=90 (51.45 %)	A=91 (11. 22 %)	A=92 (17.15 %)	A=94 (17.38 %)	A=96 (2.8 %)	natural element		
ENDF\B-VII	tota1	5.59	10.62	7.38	8.71	5.76	7.01		
	elastic	5.51	9.79	7.14	8.66	5.74	6.83		
	capture	0.078	0.83	0.23	0.0499	0.0228	0.182		
	I_0	0.19	5.88	0.70	0.32	5.16	1.08		
JEFF-3.1	tota1	5.41	11.89	7.38	6.23	6.18	6.64		
	elastic	5.39	10.64	7.15	6.18	6.16	6.44		
	capture	0.011	1.25	0.23	0.0498	0.0228	0.194		
	I_0	0.17	6.93	0.70	0.31	5.86	1.20		
JEFF-3.2beta	tota1	5.41	11.84	7.38	6.23	6.18	6.63		
	elastic	5.39	10.64	7.15	6.18	6.16	6.44		
	capture	0.011	1.20	0.23	0.0498	0.0228	0.189		
	I_0	0.17	6.10	0.70	0.31	5.15	1.09		
Atlas 2006	elastic	5.3 ± 0.3	10.7 ± 0.6	7.02 ± 0.39	8.59 ± 0.41	6.6 ± 0.4	6.40 ± 0.04		
	capture	0.077 ± 0.016	0.83 ± 0.08	0.26 ± 0.08	0.0494 ± 0.0017	0.0229 ± 0.0010	0.185 ± 0.003		
	I_0	0.17 ± 0.02	5.76 ± 0.40	0.64	0.28 ± 0.01	5.28 ± 0.11	1.10 ± 0.15		
Mughanghab Private com. 2007	elastic capture Io	0.014 ± 0.006	1.3 ± 0.1	0.14 ± 0.08	0.0494 ± 0.0017	0.0229 ± 0.001	0.186 ± 0.003		

Prelim.

Lower limit for σ_0 of **Zr-91** reported by Nakamura et al. (2007) $\Rightarrow \sigma 0 = 130$ mbarns

Accurate thermal capture cross section

for **natural Zr**

reported by Lone (1981)

Good agreement between JEFF-3.2beta and new (prelim.) recommended values

Last problem ...

ENDF\B-VII.0 (blue curve)

New evaluation ⇒ available experimental data were interpreted using nuclear reaction model code EMPIRE by M. Herman et al.

JEFF-3.1 (red curve)

Japanese evaluation ⇒ better agreement with experimental data

⁹⁰Zr available in JEFF-3.1 is better than new evaluation produced for ENDF\B-VII.0

HPRL ...

⇒ needs for high resolution total cross section of natural element

NUDAME ...

⇒ transmission measurements at the IRMM (natural element)

New evaluation ...

⇒ with capture data measured at the nTOF facility by Moreau et al (enriched samples)

Validation ...

⇒ use the PEREN facility (LPSC, Grenoble)

