

1

Inventory Completeness and Categorization

Ontario Hydro Nuclear Year 2000 Project

presented by Ian Roberts

for the OECD NEA International Workshop on the Impact of Year 2000 on the Nuclear Industry February 1999

Overview

- Objective of Inventory Completeness
- Inventory Process Overview
- Categorization
 - Safety Related Digital Asset List
- Results
- Ongoing work

Objective of Inventory Completeness

- A complete and accurate digital asset inventory
 - Reduce risk associated with missed assets
 - Demonstrate due diligence
- A systematic and traceable inventory process involving:
 - Initial identification of digital assets
 - Asset discovery
 - Inventory process completion

Inventory Process Overview

- Initial identification of digital assets
 - Surveys to all asset owners
 - Searches of manufacturer and design manuals
- Asset discovery
 - Prioritize discovery areas
 - Identify sources of information
 - Perform searches
- Inventory process completion

Prioritization of Discovery Areas

- 1) Special Safety Systems
- 2) Other Safety Related Systems
- 3) Other Systems
 - Areas of plant with no inventory
 - Process systems and locations with no inventory
 - Remaining systems and locations

Sources of Information

- Station Drawings
- Material & Equipment Databases
- Engineering Change Notices
- Field Checks
- People (Maintenance, Operation, Engineering)

Discovery Process

- Consistent method with traceability (checklist)
- Focus on I&C equipment
- Use field checks and discussions with System Responsible Engineers and maintenance staff
- Pay special attention to areas where new assets are being discovered

Example Methodology

- Using checklist to record progress and findings:
 - Get drawings for a system (USI)
 - Highlight possible digital assets
 - Review Engineering change packages
 - Review manufacturer, design, and op manuals
 - Perform field check
 - Interview operating and engineering staff
 - Complete new asset identification forms
 - Submit system search package for USI
 - Submit new assets for renovation/certification

Inventory Process Completion

- Quality and completeness review of asset information
 - Comparison of asset information between plants
 - Resolution of comparison discrepancies
- Asset Owner Signoff

Inventory Categorization

For every asset identified, perform:

- business impact categorization
 - high/medium/low impact
- safety categorization
 - Safety Related Digital Asset (SRDA) list
- technical assessment

Safety Related Digital Asset (SRDA) List

- Safety Related Digital Assets are:
 - Digital assets which are part of systems on the stations' safety related systems list, and are without effective fault-mitigating circumstances
 - Digital assets that are deemed by the asset owner to be safety related assets
- OHN has in place a process to ensure that:
 - all the safety related assets are identified
 - there is consistency
 - any discrepancies are understood

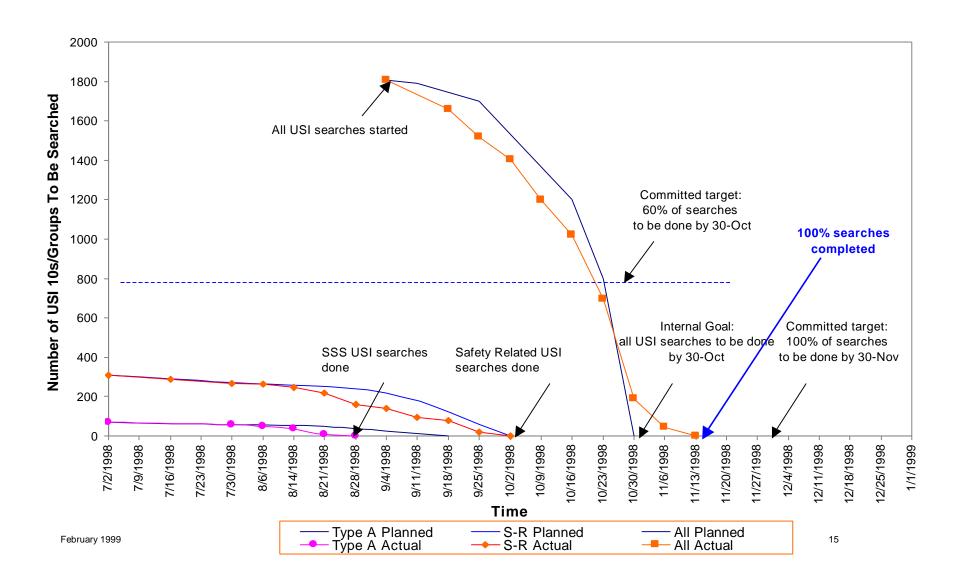
SRDA List Process

- From inventory, extract:
 - all assets with a business impact rated 'High Impact on Safety'
 - all assets under any safety related USI
- Review list with the System Responsible Engineer to determine:
 - whether any of the assets have effective fault-mitigating circumstances to justify removal from list
 - any assets not included, that should be
 - any additional assets that owner wants included

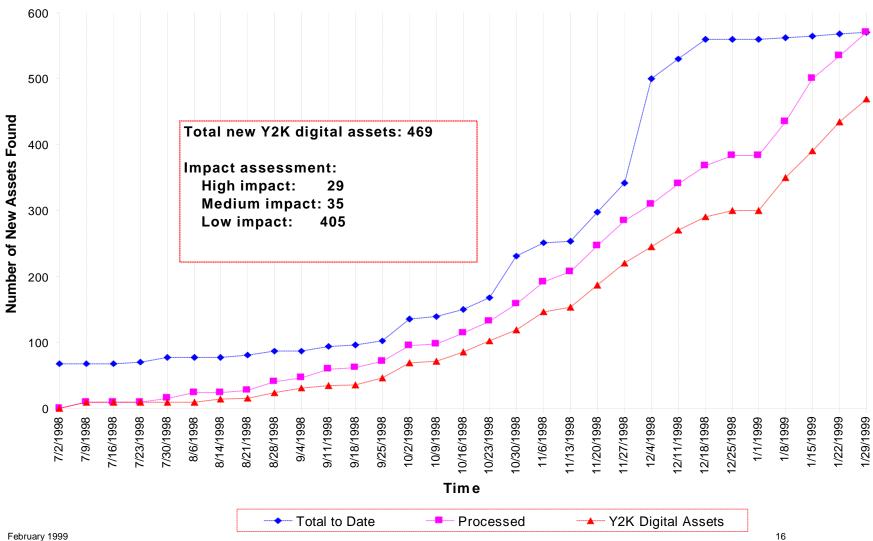
SRDA List Process (cont.)

- Compare plant lists, hold discussions to resolve differences
- Obtain concurrence of Nuclear Safety Managers
- Assign each system to one of three categories:
 - Special Safety Systems (SSS)
 - Failure could challenge a SSS
 - Other Safety Related

Results


Safety Related Digital Systems

Site	SSS	Failure Could Challenge SSS	Safety Related
Bruce	None	4	12
Darlington	4	2	16
Pickering	2	6	12


Pickering Process Assets: Inventory Searches for All USIs

Pickering Process Assets: New Asset Discovery

Inventory Numbers - Pickering

	Inventory Completeness	Total Assets
	Assets	
High	29	152
Medium	35	196
Low	405	1331
Total	469	1679

Asset Discovery Experience

- Many of the new assets were discovered in:
 - Skid mounted equipment
 - Loose instrumentation
 - Engineering changes not installed
 - New systems
- Equipment information is not available from one source
- Systematic checks using consistent approach critical

Ongoing work

- Safeguards in Plant Procedures
 - Procurement, engineering, etc.
- Periodic checking
 - New purchases
 - Engineering changes
 - Temporary changes
- Awareness training of staff

Closing

An accurate and complete inventory is fundamental to the entire Y2K process.

Inventory Completeness and Skiing: One and the Same !

