
Myths and Methods:
Is There a Scientific Basis for Y2K Inspections ?

David Lorge Parnas, P.Eng.
NSERC/Bell Industrial Research Chair in Software Engineering

Director of the Software Engineering Programme
DEPARTMENT OF COMPUTING AND SOFTWARE

Faculty of Engineering
McMaster University, Hamilton, Ontario, Canada - L85 4L

ABSTRACT

Although it is possible to use scientifically based mathematical
models in the analysis of software, most programmers rely on
their intuitive understanding instead. With complex programs,
our intuition is often inadequate and we overlook serious faults.
Although most have introduced a systematic management
process for Y2K software inspection and repairs, the actual
analysis of the software relies on intuitive 'eyeballing" of the
code. Intuition has given rise to some folklore about the Y2K
problem that has no scientific basis. We need to base our
analysis on sound science and mathematics. Moreover, sound
models suggest procedures that are more systematic and more
trustworthy than the intuitive ones. This paper will discuss both
some of the unscientific myths and sound inspection methods. If
we base our program analysis on unsound methods, we are
"building on sand" and what we do will fail.

Introduction

First reports of the Y2K problem viewed as
alarmist".

We know now that the problems are quite
real.

Governments and companies are all investing
in finding and correcting the Y2K bugs.

I want to discuss the following issues:

l Why did it happen?

l Why should we worry?

l What myths are common about this problem?

l What can we do to make the inspection/repair
process more effective?

Why did it happen? -
the usual explanation

Programs were written when computer
memories were much smaller.

Programs were not "portable" and were
discarded with each new machine

It seemed silly to waste memory on those
redundant “19”s

Many of those old programs are still being
used New ones must to be compatible with
old.

Programmers were making a necessary
compromise and did the best that could
be done given the memory limitations.

Why did it happen? -
the real explanation

The usual explanation of the problem does not hold up under
scrutiny.
lWith no extra memory, the programs could have been
written to work from 1960 to 2059.
lA single ~ bit byte can be used to provide a range of 256
years. With no extra memory. programs could have been
useful until the year 2200.
lFor nearly 3 decades we have known how to organise
programs so that data representation decisions, such as the
decision to store only 2 digits of a date, are easily revised.
Programmers were either unaware of these techniques or
did not chose to use them.

The real cause of the Y2K bug is that most programmers
have not received an education appropriate to the work that
they do.

Many of the people who wrote those programs, and many
who are still working on them. are not competent for the
jobs they have.

The Cause For Concern

Many software experts are concerned because:

•Most software products are released with "bugs".
•By some estimates, more than half of all "fixes" don't
adequately correct the problem and another "fix" is needed.
•Sometimes each "fix" introduces more errors than it
"repaired"; as you 'correct" some software, it gets worse, not
better.
•We are now working with software that was written long
ago by people who are gone.
•In some cases we are looking at software that is so old that
the programming language is no longer being used by today's
programmers.
•We have no reason to expect that our success rate with Y2K
corrections will be higher than usual. Au contraire.
•There are some organisations that do not seem to be taking
the problem seriously.

Any Prudent person would expect problems.
These problems will all happen at the same time.
It is unlikely that things will go smoothly.

Y2K Myths

Myth 1: "Y2K" is a software
problem. If the hardware is not
programmable, there is no
problem."

l Any digital system, including
those that are not programmable,
may use a representation or logic
that does not work at the turn of a
century.

l All digital hardware that may
store dates must be reviewed and
tested.

Y2K Myths

Myth 2: If the system does not have
a real -time clock, there is no Y2K
problem.

l Systems with an internal clock are
obviously problem.

l Systems that get date/time
information from external sources
can also have problems.

l It doesn't matter whether the source
of date data is internal or external;

l Systems that do nothing more than
process a date typed in by an
operator, could have Y2K problems
and must be inspected.

Y2K Myths

Myth 3: If the system does not have
a battery to maintain date/time
during a power outage there can be
no Y2K problem.

l A system that requires that the date be
supplied again when it is restarted is
potential problem.

l Moreover, some systems can retain
dates for limited periods of time if they
do not have battery backup.

l Some systems were designed on the
assumption of a highly reliable power
supply. They may still have Y)K related
errors.

Y2K Myths

Myth 4: If the software does not
process dates, there can be no
Y2K problem.

l A system that is itself Y2K
compliant may fail because one of
the systems with which it
exchanges information fails.

l A system that sends system to a
failed system may fail because the
communications protocol calls for
an acknowledgement of receipt.

Y2K Myths

Myth 5: Software that does not need to
process dates is "immune" to Y2K
problems.

l Software that does not need to process dates may
actually do so.

l It is quite common to reuse software in order to
save on development costs. The old software
may include segments of code that are not
needed for the new application.

l In today's networks, software may acquire
information from other systems on the network
and may fail when those systems fail.

l Software that does not need date information
itself, may relay it to other systems.

We cannot conclude that a system is immune on the
basis of requirements alone: one must examine the
programs.

Y2K Myths

Myth 6: Only systems identified as safety
systems need be of concern to safety
authorities.

l Systems are identified as safety-critical on
the basis of short-term behaviour.

l For Y2K we must be prepared for long
outages.

l Systems that are needed for maintenance or
record-keeping can fail for short periods
without problems.

l If maintenance systems are not available
for several days or a week, safety hazards
may go undetected and important safety
procedures may be forgotten.

Y2K Myths

Myth 7: Systems can be tested one-at-a-
time by specialist teams.

� Heterogeneous networks, are common.

� Programmers tend to be experts in one system
or type of system and not know much about
others.

� Managers to assemble Y2K teams that
specialise in individual computer systems.

� It is possible to repair Y2K problems on two
communicating computer systems in such a
way that each one works on its own but they
will fail when used together in the year 2000.

Any set of communicating? systems must be
analysed as a whole with teams that include experts
in each system.

Y2K Myths
Myth 8: If no date dependent data flows in
or out of a system while it is running, there
is no problem.

l It is often assumed that systems that
have no internal clock and no interface
that allows real-time date-dependent
information to be exchanged while they
are running are not subject to Y2K
problems.

l Date- dependant information may be
supplied to the software by an operator
carrying an eprom, disk, or some other
data carrier.

All information sources and paths must be
taken into account, not just the run-time
information paths.

Y2K Myths

Myth 9: Date stamps in files don't matter.

l Date of last change may be encoded in a file.

l When inspectors find these "date stamps" while
looking for Y2K problems. they tend to ignore
the.

l This is usually justified but the whole file is
available to the software that processes it.

l Date stamps may be used by support software in
archiving.

l Use of this data is unlikely, but ... for example ...

l A subtle bug may occur if an unexpected date
such as "00" is present.

It is necessary to show that date stamp information is
not used: we cannot assume that to be the case.

Y2K Myths

Myth 10: Planned testing, using
"critical dates" is adequate.

l Lists of critical" dates, 1.1.2000,
29.2.2000 or 9.9.1999 are very popular.

l There are many known programming
errors that will lead to errors on these
dates.

l We cannot be sure that a program that
does not fail on these special dates will
not fail on other dates. Prudence
requires extensive testing using a
statistically valid random selection of
dates.

Y2K Myths
Myth 11: You can rely on keyword scan lists

l There are many lists of keywords that may
present at date-sensitive parts of the
software.Some organisations seem to think that
they can find all potential points of failure by
scanning for words like "date", "year", or “time".

l It is well known that the behaviour of a program
will not change if one identifier is systematically
replaced by another that was not previously used
in the program

l Programmers are notoriously capricious in their
choice of identifiers and their choice of in- line
comments.

l A programmer may use "jaar" instead of
"year"Programmer may believe that "year" is
spelled "yir".

Scanning for key words is a useful supplementary
confidence-building’ technique but we cannot
assume that all date processing'' parts in the
program will be found.

Y2K Myths

Myth 12: The original safety cases remain valid.

l A "safety case" shows that the risk of failure is
acceptably low.

l Usually the "safety case" is based on
assumptions about the likelihood of
simultaneous failures.

l Unfortunately, the Y2K failures are very likely
to occur simultaneously or in a short period of
time.

l The likelihood of simultaneous Y2K failures is
much higher than the likelihood of
simultaneous failures of other types.

l All safety cases for existing equipment should
be re- examined to consider the effects of
simultaneous failures that were considered
unlikely in when the analysis was done.

Systematic methods

Three methods that have been
proven practical in practice and
should be applied

l Data Flow Diagrams

l Slicing

l Inspection by creating
Program function tables

Decomposition based on data flow
diagrams

l We are often looking at complex networks or
complex software systems.

l e must use the "divide and conquer" philosophy,
l Division cannot be done arbitrarily.
l Decomposition will only be helpful if the

subsystems that are identified are relatively
independent.

l We must know the information-flow between the
system in question and other systems.

l We may "fix" systems so they work - but not
together.

l Data-flow diagrams show all sources and recipients
of information, all places where information is
stored temporarily, output to a user/operator as well
as all reports and forms that are produced. More
detailed diagrams will include specific information
about the information flowing between systems.

l Data-flow diagrams provide a lot of insight.

Decomposition based on data flow
diagrams

lDiagrams can be made more precise by providing
using mathematical notation.
lIn the case of Y2K analysis, one must know whether
or not the information flowing is date dependent.
lInclude all information-flow, not just that information
flowing along wires while the system is running.
lInformation-flow can be very indirect. For example, if
system A controls the flow of a coolant and system B
measures the flow of that coolant, information is
flowing from A to B.
lInformation-flow diagram should be used when
decomposing a set of computer systems into smaller
systems that can be studied nearly independently.
lPhysical placement, administrative placement, etc. are
not critical issues. It is the information- flow that
matters.
l"Every bit counts".

Even small amounts of information that are
transferred very infrequently must be shown.

Slicing

l We must search a program for relevant sections.
l It is very easy to miss a relevant section
l Slicing is a way to reduce a program to a smaller

program that contained only the relevant sections
l In slicing identifies variables of interest, then

finds the pans of a program that touch those
variables.

l Variables used or modified in those statements
are added to the set and the search repeated.

l Eventually, the search terminates having
identified all lines in the program that may affect
the variables.

l The set of such lines is called a "slice" and is
often much smaller than the original program.

l There are slicing tools available for specific
languages.

l Slicing is a systematic and trustworthy method
that can be applied by hand.

l Some programming techniques make "slicing"
more difficult, e.g. machine- language, using
indexing or indirect referencing, using pointers,
using arrays in 'clever" ways.

Program function table analysis

• When analysing a complex we must
summarise the behaviour of sections
of code so that one can more easily
understand the behaviour of the
enclosing or invoking sections.

• Any executable program can be
represented by mathematical
function.

• The functions are more difficult to
describe than those encountered in
analogue systems. A tabular format
allows these functions to be written
and understood by the average
engineer.

An Informal Introduction To
Program-function Tables.

Array B contains
x 1

Array B does not
contain x 2

j’1 B[j’] = x true

Present’= true false

1. “Array B contains x” is defined as (∃ I, B[I] = x)
2. “Array B does not contain x” is defined as (∀ I, ((1≤ I ≤
N) ⇒ B(I) ≠ x))

lProgram must search an array, B, for an
element whose value is that of the variable x.
lProgram must determine the value of two
program variables called "j" and "present".
lThe variable j records the index of one
element of A whose value is the value of the
variable. The variable called "present" indicate
whether or not the desired value could be
found in B.
lIf B does not contain the value sought, the
value of j is allowed to be any integer value.

NC (x, B)

More on Tables

Array B contains
x 1

Array B does not
contain x 2

j’1 B[j’] = x true

Present’= true false

lHeader shows two situations must be
distinguished.
lEach row corresponds to a program variable
lEntry describes the final value of this
variable.
lLeft header identifies the variable whose
value is described in each row and how value
is described.
lA "1" in the vertical header indicates that the
variable's value must satisfy a condition given
in the cells in the main grid.
lWhen "=" appears instead of "1", the
expressions must evaluate to the value of the
variable.
lThe condition "NC(x, B)" is true if x and B
are not changed by the program.

NC (x, B)

Advantages of Program Function Tables

lNothing that can be said with such a table that
cannot be said using equivalent conventional
Boolean expressions.
lUsing the table, one can select the row and
column of interest and need not understand the
whole expression. The number of characters that
appear in the tabular expression is usually reduced
because in the latter some of the expressions that
appear once in one of the headers would have to
be repeated several times in the conventional
expression.
lOn larger tables involving many cases, many
variables, and longer identifiers, the advantages of
the table format are more dramatic.
Tables of this sort were used in the inspection of
safety-critical software for the Darlington Nuclear
Power Generation Station.

Program Function Tables are useful whenever
a very careful and disciplined inspection of
software is required. They "divide and
conquer"

Conclusions

Classically educated engineers know that they
must apply science and mathematics in their
work.
Most programmers have not received an
appropriate professional education and build and
inspect programs in a purely intuitive manner.
The consequence is a never ending "software
crisis" and the Y2K problem that we have today.
If we want to solve that problem, we must move
away from myths and folklore and apply
scientifically sound software engineering
techniques. A sound Y2K analysis process will
include:

(1) accurate data flow diagrams,
(2) program slicing for long programs that are not
well structured, and
(3) program function tables where precise
descriptions of program behaviour are needed.

References
1. Archinoff, G.H., Hohendorf, RJ, Wassyag A., Quigley, B., Borsch, M.R.,
"Verification of the Shutdown System Software at the Darlington Nuclear
Generating Station", International Conference on Control & Instrumentation in
Nuclear Installations, Glasgow, May 1990.
2. Parnas, D.L., Asmis, G.J.K., Madey, 1., "Assessment of Safety-Critical
Software in Nuclear Power Plants", Nuclear Safety. vol. 32, no. 2, April-June
1991, 189-198.
3. Parnas, D.L., Maday, J., "Functional Documentation for Computer Systems
Engineering" published in Science of Computer Programming (Elsevier) vol.
25, number I, October 1995, pp 41-61.
4. Parnas, D.L., "Tabular Representation of Relations", CRL Report 260,
Communications Research Laboratory, McMaster University, October 1992.
5. Parnas, D.L. "Mathematical Descriptions and Specification of Software",
Proceedings of IFIP World Congress 1994. Volume 1 August 1994, pp. 354-
359.
6. Parnas, D.L., "Inspection of Safety Critical Software using Function
Tables", Proceedings of IFIP World Congress 1994, Volume III August 1994,
pp. 270-277.
7. Parnas, D.L., Madoy, J., Iglewski, M. "Precise Documentation of Well
Structured Programs", IEEE Transactions on Software Engineering, Vol. 20,
No.12, December 1994, pp. 948-976.
8. Weiser, M., "Program Slicing", Proceedings of the 5th International on
Conference on Software Engineering, March 1981.
9. Weisa, M., ’Programmers Use Slices When Debugging", Communications
of the ACM. 25(7), pp. 446-452, July 1982.
10. Weiser, M., Lyle, J., "Experiments on Slicing-Based Debugging Aids",
Empirical Studies of Programmers, pp. 187-197,1986.
11. Yourden, E.. Constantine, L., "Structured Design: Fundamentals of a
Discipline of Computer Program and System Design - 2nd bed.. September
1986. Prentice Hall.

