CALCULATION AND EXPERIMENTAL STUDIES ON MINOR ACTINIDES SAMPLES IRRADIATION IN FAST REACTORS

A. Kotchetkov, Yu. Khomiakov, N. Nerozin, E. Smetanin and A. Tsiboulia SSC IPPE, Obninsk, Russia

> **A. Bychkov** and **I. Zhemkov** SSC RIAR, Dimitrovograd, Russia

Abstract

Review of the experimental work on the material composition variations of different types of fuel and actinide samples under the influence of fast reactor neutron irradiation is presented in the report. Brief characteristics of the experimental methods applied, experimental programmes performed, fuel and actinide samples researched are presented. Statement of problem is given as well as some results of the project on the estimated data bank development maximally accounting the whole set of experimental results obtained in BN-350 and BOR-60 reactor adjusted to conditions of specially developed benchmark models.

Introduction

Within sequence of years a great number of physical experiments was carried out in BN-350 and BOR-60 reactor. A series of burn-up experiments were carried out with pure actinide samples (Th, Pa, U, Np, Pu, Am, Cm), fuel samples and structure elements irradiated in the reactor core and blanket for the purpose of the further radiochemical research. The experimental data analysis and compilation are currently carried out in order to develop the database supporting the International programmes on MA transmutation and for calculation code and nuclear date verification as well.

Measurements in BN-350 reactor

Method of the "needle" detectors irradiated in the inter-element space of the fuel assembly has been developed for the neutron field investigation in standard fuel assemblies of BN-350 reactor with the minimal disturbances. It has been found out that thin stainless steel capillaries can be inserted into the inter-element space of fuel assembly without noticeable deterioration of thermal exchange conditions. That's why the sets of experimental samples of 1.2 mm diameter have been fabricated and consecutively loaded into capillary of 1.6 mm diameter. The capillary was inserted into the interelement gap and fastened in the head part of the fuel assembly for irradiation period. As a rule a sample of high-enriched uranium-235 (90% enrichment) was loaded into capillary and was used as a neutron fluence monitor. In order to determine the control sample location in the fuel assembly the iridium-192 radioactive nuclide was loaded into the bottom part of the pipe. The actinide sample arrangement in the fuel assembly irradiated in the 243th cell of reactor is shown on the Figure 1 as an example. This method has become a basic one in the research at BN-350 in the experiments of two types. The first one is the activation measurements by the sample irradiation at low power level described above with the further radiochemical analysis of the induced activity. The other type is longterm irradiation of fuel and actinide samples at standard power level with the further radiochemical analysis of the sample nuclide composition variation. These measurements allow investigation of such neutron reactions which are not determined by the activation method, for example, radiation capture reaction on uranium-235, plutonium isotopes, americium-241, etc.

Figure 1. The scheme of samples location into assembly

Thermal power, MWt	750	
Subassemblies irradiation interval, eff.days	IC	OC*
	395 456	
Interval between reloadings, eff.days	7	9
Number of subassemblies in the core	IC	OC
	109	115
Type of fuel	U	O_2
Fuel enrichment, %		
IC	1	7
OC	2	б
Core FSA hexagonal cladding across flats dimensions, mm	96	×2
Hexagonal lattice pitch, mm	9	8
Core subassembly fuel pin diameter, mm	6.9>	<0.4
The number of fuel pins in core subassembly	12	27
Fuel column height, mm	1 0	00
Fuel effective density, g/cm ³	8.	6
Axial blanket material	Depleted UO	$_{2}(0.4\%^{235}\mathrm{U})$
Fuel column height in upper axial blanket, mm	300	
Fuel column height in lower axial blanket, mm	380	
Effective density of depleted UO_2 in axial blanket, g/cm ³	8.	6
Radial blanket material	Depleted UO	₂ (0.4% ²³⁵ U)
Radial blanket fuel pin diameter, mm	14.2	×0.4
The number of fuel pins in radial blanket subassembly	3	7
Fuel column height in radial blanket, mm	1 6	80
Effective density of depleted UO ₂ in radial blanket, g/cm ³	9.	4
The number of radial blanket assemblies	25	6
Including:	5.	
Inner radial blanket	10)1
Outer radial l blanket	255	
Inner radial blanket subassemblies irradiation interval, eff.days	553	
Outer radial blanket subassemblies irradiation interval, eff.days	1 106	
The number of subassemblies in the in-vessel storage	10)9
Number of control rods,	1	2
Including:		2
SR – shim rods	6	<u>.</u>
AR – automatic regulator	2	2
TC – temperature reactivity compensators	1	
SA – scram assemblies	3	3

Table 1. The main BN-350 reactor parameters

* IC – Inner Core, ITC – Intermediate Core, OC – Outer Core

Figure 2. Reactor map of BN-350

Inner Core subassemblies, 17% enrichment

Outer Core subassemblies, 26% enrichment

Inner Axial Blanket subassemblies

- Outer Axial Blanket subassemblies
- MOX fuel subassemblies
- Control rods: SA, AR, SR, TC

In-vessel storage

Nº	Irradiation date	Number of samples	Composition	Radiation zone	Measurement results	Cross-section ratio derived	
1. Study of uranium oxide fuel of fuel elements of the first loading							
1.1	1973- 1976	9	enriched (26%) ²³⁵ U	HEZ	Pu, FP accumulation U, Pu isotopic composition	$\alpha^5 \sigma_c(8)/\sigma_f(5)$	
1.2	1973- 1976	7	enriched (17%) ²³⁵ U	LEZ	Pu, FP accumulation U, Pu isotopic composition	$\sigma_{c}(39)/\sigma_{f}(5) \sigma_{n,2n}(39)/\sigma_{f}(5)$	
1.3	1973- 1976	22	depleted uranium	HEZ, LEZ, blanket	Pu, FP accumulation U, Pu isotopic composition		
2. St	udy of ura	nium oxid	le fuel of fuel eler	ments of th	ne second loading a	nd control samples	
irı	radiated in f	uel assem	blies of the second l	oading			
2.1	1978- 1980	3	²³⁵ U (21%)	LEZ	Pu, FP accumulation U, Pu isotopic composition	_	
2.2	1981	1	²³⁵ U (88%)	LEZ	Pu, FP accumulation U, Pu isotopic composition	α^5	
2.3	1981	1	²³⁹ Pu (95%)	LEZ	Am, Cm, FP accumulation Pu isotopic composition	$\alpha^9 \\ \sigma_c(40)/\sigma_f(39) \\ \sigma_c(41)/\sigma_f(39)$	
2.4	1981	2	MOX, reactor (WWER) Pu (74% ²³⁹ Pu)	LEZ	Am, Cm, FP accumulation Pu isotopic composition	$\begin{array}{c} \sigma_{c}(Am241)/\sigma_{f}(39) \\ \sigma_{n,2n}(39)/\sigma_{f}(39) \\ \omega(^{242m}Am) \end{array}$	
<i>3.</i> ²³⁶	U and ²³⁷ Np	sample i	research in order to	determine	²³⁶ Pu accumulation	and (n,2n) reaction	
cr	oss sections	²³⁷ Pu					
3.1	1977- 1978	2	²³⁶ U(99.66%)	blanket	²³⁶ Pu/ ²³⁸ Pu	$\sigma_{n,2n}/\sigma_c(^{237}Np)$	
3.2	1977- 1978	4	²³⁷ Np(100%)	HEZ, LEZ, blanket	²³⁶ Pu/ ²³⁸ Pu	$\sigma_{n,2n}/\sigma_c(^{237}Np)$	
4. St	udy of mixe	d uraniun	n-plutonium fuel in	the module	of 7 fuel assemblies v	with MOX fuel	
4.1	28.09.82 16.06.83	9	MOX fuel: 21% Pu 79% depleted U	7Pu (LEZ)	Am, Cm, FP accumulation Pu isotopic composition	$\begin{array}{c} \alpha^{9} \\ \sigma_{c}(8)/\sigma_{f}(39) \\ \sigma_{c}(40)/\sigma_{f}(39) \\ \sigma_{c}(41)/\sigma_{f}(39) \\ \sigma_{c}(241)/\sigma_{f}(39) \\ \sigma_{n,2n}(39)/\sigma_{f}(39) \end{array}$	
5. St sa	udy of meta me fuel	llic uranii	um fuel irradiated in	n experimen	ntal fuel radial blank	et assembly with the	
	06.12.87 22.03.88	3	depleted ²³⁸ U	LEZ	Pu, FP accumulation U, Pu isotopic composition		

Table 2. The list of actinide samples researched

6. St	6. Study of thorium and uranium-233, -234 samples for thorium fuel cycle substantiation							
6.1	1987- 1988	8	Dioxide Th	Outer radial blanket	U, ²³³ Pa accumulation U isotopic composition dependence of ²³² U accumulation on their location in the blanket	$ \begin{array}{c} \sigma_{c}(^{232}\text{Th})/\sigma_{f}(5) \\ \sigma_{n,2n}(^{232}\text{Th})/\sigma_{f}(5) \\ \sigma_{c}(^{231}\text{Pa})/\sigma_{f}(5) \end{array} $		
6.2	1990- 1992	6	Metal Th	blanket	²³³ U, ²³² U, FP accumulation			
6.3	1990- 1992	1	Th	LEZ	²³³ U, ²³² U, FP accumulation			
6.4	1990- 1992	2	²³³ U	LEZ	U, FP [*] isotopic composition	$\sigma_c(3)/\sigma_f(3)^*$		
6.5	1990- 1992	1	²³⁴ U	LEZ	U, FP [*] isotopic composition	$\sigma_c(4)/\sigma_f(4)^*$		
7. St tre	tudy of mi ansmutation	nor actin	nide (MA) samples	s for subs	stantiation of the p	possibility of their		
7.1	1990- 1992	1	²³⁷ Np	LEZ	under investigation	$\sigma_c/\sigma_f(^{237}Np)^*$		
7.2	1990- 1992	2	²⁴¹ Am	LEZ	under investigation	$\sigma_c\!/\!\sigma_f{(}^{241}Am{)}^*$		
7.3	1990- 1992	1	²³⁸ Pu	LEZ	under investigation	$\sigma_{c}/\sigma_{f}(^{238}Pu)^{*}$		
7.4	1990- 1992	2	²⁴⁰ Pu	LEZ	under investigation	$\sigma_c/\sigma_f(^{240}Pu)^*$		
7.5	1990- 1992	2	²⁴³ +Cm ²⁴⁴ Cm	LEZ	under investigation	$\sigma_c(^{244}\text{Cm})/\sigma_f(5)^*$		

Table 2. The list of actinide samples researched (contd.)

* Presumably.

Measurements in BOR-60 reactor

Two pins with eight ampoules in each were irradiated in BOR-60 reactor. These pins are located into experimental assembly having 19 pins (see Figure 3). Studying actinides were set into quartz capsule having follow dimensions: outer diameter -4.5 mm; length -20-21 mm; thickness -0.7-0.8 mm. The set of samples is shown in Table 3.

Figure 3. Map of BOR-60 experimental assembly

Table 3. The initial MA isotope composition into the ampoules

Ampoule marking	The basic isotope	Mass (mkg)	The isotope composition (%)
1	²³² Th	419	232 Th $- 100$
2	²³⁷ Np	408	$^{237}Np - 100$
			$^{238}\text{Pu} - 0.36 \\ ^{239}\text{Pu} - 94.80$
3	²³⁹ Pu	115	240 Pu - 4.66 241 Pu - 0.18 242 Pu - <0.01
4	²⁴⁰ Pu	126	$\begin{array}{r} 2^{238} \mathrm{Pu} - 0.18 \\ 2^{239} \mathrm{Pu} - 1.00 \\ 2^{240} \mathrm{Pu} - 98.82 \end{array}$
5	²⁴² Pu	127	$^{242}Pu - 99.54$
6	²⁴¹ Am	129	$^{241}Am - 100$
7	²⁴³ Am	113	${}^{241}\text{Am}-2.37$ ${}^{243}\text{Am}-97.62$ ${}^{244}\text{Cm}-{<}0.01$
8	²⁴⁴ Cm	129	$^{244}Cm - 100$

Integrated gravichemical method of irradiated sample nuclide composition study

This method is the basic one during the research of the sample nuclide composition after longterm irradiation during one or several micro-runs (operation periods). It proposes the recovery of weight amounts of strictly stochoimetric compositions of uranium and plutonium and purification from impurities. Separate isotope amounts are determined by a combination of weighing (the use of the most precise method, if possible), radiometric and mass-spectrometric methods. The methods of alpha-spectrometric (actinides) and gamma-spectrometric (fission fragments) analysis are used. As the irradiated samples and their solutions are highly active the special specimens are prepared for the measurements by small amount sampling and further considerable dilution. Typical errors of α - and γ measurements are presented in the Table 4. Mass-spectrometric measurements give the most precise results in relative concentration of one or another isotopes (parts of percent). Sometimes these measurements were combined with the method of the isotope dilution.

Isotone		Total error					
Isotope	Statistics	Dilution	Sample preparation	Irradiation yield	Reference	(%)	
$^{241}Am + ^{238}Pu (\alpha)$	1.0	1.8	2.0	0.5	<0.3	2.9	
²⁴¹ Am (γ)	0.4	1.0	2.0	_	2.0	3.0	
238 Pu (γ)	3.0	0.4	2.0	1.1	3.0	4.8	
²⁴³ Cm (γ)	1.5	1.0	2.0	2.8	3.0	4.9	
^{137}Cs (γ)	0.9	1.0	2.0	_	2.0	3.1	

Table 4. Characteristic errors of α - and γ -spectrometric measurements and their main components

Analysis of experimental results

Calculation analysis of experiments is based on:

- ABBN-93 constant system; [1]
- three-dimension hexagonal geometry code TRIGEX [2] in diffusion approximation for neutron field calculation;
- CARE [3] code for calculation of nuclide composition of the spent fuel and samples.

The following problems are being solved while analysis:

- neutron field precise calculations according to detail description of changing in core configuration in course of fuel reloading and burn-up;
- calculation of nuclide composition of fuel pins or samples;
- comparison of calculation and experimental data on nuclide composition;
- adjustment of neutron fluences according to results of analysis of monitor samples;
- neutron reactions cross sections rates decision according to results of nuclide composition analysis;

- definition of benchmark model of experiments, directed on neutron data precision;
- reducing results of separate measurements to benchmark model conditions and analysis of consistency;
- creation of data base of experiments;
- neutron data precision and adjustment.

Results of comparison of series of cross section rates, obtained in BN-350 experiments are given in Table 5. Tables 6 and 7 show preliminary results of expected changing in nuclide composition of actinide samples, being analysed at present.

Table 5.	Comparison of calculated (C) and experimental (E) data on cross section ratios on
	actinides, $(C - E)/E$ (%)

Isotope	σ_x / σ_{f5}	LEZ*	HEZ**	MOX Sub-zone
²³² Th	Fiss	-1 ± 4	3 ± 7	5 ± 6
111	Capt	5 ± 6	-8 ± 7	0 ± 7
²³¹ Pa	Capt	2 ± 5	-	-
²³⁵ U	α	-2 ± 3	10 ± 4	_
236 T T	Fiss	4 ± 5	1 ± 5	0 ± 6
U	Capt	5 ± 5	_	_
	Fiss	3 ± 3	3 ± 5	2 ± 4
²³⁸ U	capt	-1 ± 3	1 ± 3	0 ± 4
	n,2n	-5 ± 11	10 ± 10	_
	fiss	4 ± 4	-2 ± 5	3 ± 5
²³⁷ Np	capt	_	-3 ± 6	_
	n,2n	4 ± 6	2 ± 6	_
	fiss	1 ± 3	0 ± 3	0 ± 4
²³⁹ Pu	α	2 ± 4	15 ± 6	1 ± 3
	n,2n	_	-	-6 ± 7
²⁴⁰ Du	fiss	3 ± 5	4 ± 5	_
ru	capt	0 ± 5	_	9 ± 6
²⁴¹ Pu	α	-8 ± 11	_	-6 ± 6
²⁴¹ Am	capt	0 ± 8	_	-11 ± 5

* Low enrichment zone

** High enrichment zone

Isotope	Reactor cell	Irradiated time, days	Fluence 10 ²³ cm ⁻² s ⁻¹	Basic isotope burn-up (%)	Secondary actinide generation (%)	Total burn-up (%)
²³⁷ Np	89	781	2.0	35	25	10
²³⁸ Pu	89	781	1.8	31	8	23
²⁴⁰ Pu	110	781	1.7	11	0.5	10.5
²⁴¹ Am	89	781	1.9	35	25.5	9.5
²⁴¹ Am	243	797	2.0	35	25.7	9.3
²⁴⁴ Cm	243	797	1.5	25	11	14
²⁴⁴ Cm	243	797	1.7	31	14	17

Table 6. The calculation estimations of characteristics MA samples, irradiated in BN-350

Conclusions

- In the BN-350 reactor there have been performed wide investigations of nuclide composition changing of fuel samples and several separate isotopes, which allow to increase accuracy and reliability of nuclide data for basic isotopes, such as U, Pu and some minor actinides.
- Series of experiments has got visible discrepancies between calculation and experimental data, for example, for such isotopes as ²⁴⁰Pu, ²⁴¹Am. As a rule, analysis of U or Pu samples shows the larger accumulation of Cm isotopes in experiment. In the whole, the minor actinides data are still insufficient. At the present time the work on analysis of minor actinides samples, irradiated in BN-530 and BOR-60, is carried out and it is going to give the necessary experimental information.
- Another unsolved problem is that analysis of various experiments was carried out at the different time using different approaches and different nuclear data, that does not allow to carry out complete analysis of obtained data. It is necessary to perform:
- evaluation of experiments carried out in BN-350 and BOR-60;
- creation of benchmarks on the base of these experiments for testing nuclear data and calculation codes and storing it in the unified data base;
- calculation analysis of benchmarks.

REFERENCES

- A.S. Seregin (1983), Annotation of TRIGEX Code Intended for Low-group Neutron and Physical Reactor Calculation in Hexagonal Geometry. Problems of Atomic Science and Engineering. Series Nuclear Reactor Physics and Engineering. Issue 4(33).
- [2] G.N. Manturov, M.N. Nikolaev, A.M. Tsiboulia (1996), BNAB-93 Group Constant System. Part 1. Nuclear Constants for Neutron and Photon Radiation Field Calculation. Problems of Atomic Science and Engineering. Series Nuclear Constants 1, p. 59.
- [3] A.L. Kochetkov (1995), Preprint IPPE-2431, Obninsk.

239 Th 419 410.6 ^{231}Pa 0.051 0.26 ^{233}U 6.5 0.045 ^{233}U 0.045 0.045 ^{234}U 0.045 0.045 Nb 2 ^{237}Np 408 360.2 4.7 ^{238}Pu 0.39 27.6 4.7 ^{239}Pu 0.39 0.39 13.8 ^{240}Pu 0.357 13.8 ^{240}Pu 0.207 0.57 ^{240}Pu 0.0115 0.019 ^{244}Pu 0.227 0.19 ^{239}Pu 1.26 1.05 ^{244}Pu 7.9 5.8 ^{242}Pu 0.098 244Am 0.42 117.2 3.8 ^{243}Pu 126.42 117.2 ^{244}Pu 0.50 5.8 ^{237}Np 0.50 2.8 $^{243}Cm^3$ 0.13 4.7 ^{244}Pu 1.6 4.7 ^{243}Am <t< th=""><th>Sample</th><th>Isotope</th><th>Initial isotope composition, (mkg)</th><th>Isotope composition, after irradiation (mkg)</th><th>Total burn- up (%)</th></t<>	Sample	Isotope	Initial isotope composition, (mkg)	Isotope composition, after irradiation (mkg)	Total burn- up (%)
N₂ 1 231 Pa 233 Pa 233 U 233 U 0.051 0.70 0.26 2^{23} U 0.045 6.5 2^{24} U 0.045 6.5 2^{24} U 0.26 4.7 2^{28} Pu 0.39 2.7.6 4.7 2^{29} Pu 0.39 2.39 0.39 3.8 2^{240} Pu 5.35 7.3 13.8 2^{240} Pu 0.207 0.57 3.8 2^{249} Pu 0.0015 0.009 2.4 2^{239} Pu 0.227 0.19 2.23 2^{247} Pu 0.227 0.19 2.33 2^{239} Pu 1.26 1.05 3.8 2^{247} Pu 0.098 2.4 3.8 2^{247} Pu 0.098 2.4 3.8 2^{247} Pu 0.042 117.2 3.8 2^{247} Pu 0.008 3.8 3.8 2^{247} Pu 0.049 5.7 2.3 8^{243} Cm ⁴ 0.650 2.3 1.6 4.7		²³² Th	419	410.6	
№ 1 $23^{3}Pa$ $23^{3}U$ 0.001 6.5 0.26 $2^{237}U$ 0.045 0.045 № 2 $2^{237}Np$ $2^{237}Np$ 408 360.2 0.045 4.7 $N^{2} 2$ $2^{237}Np$ $2^{238}Pu$ 0.414 0.36 4.7 $2^{239}Pu$ 0.902 90.8 4.7 4.7 $2^{240}Pu$ 0.535 7.3 13.8 $2^{240}Pu$ 0.207 0.57 13.8 $2^{240}Pu$ 0.207 0.57 13.8 $2^{240}Pu$ 0.227 0.19 4.7 $2^{240}Pu$ 0.227 0.19 5.8 $2^{240}Pu$ 0.227 0.19 5.8 $2^{240}Pu$ 0.0215 109.0 5.8 $2^{240}Pu$ 0.0227 0.19 5.8 $2^{240}Pu$ 0.042 124.51 109.0 $2^{240}Pu$ 0.098 4.3 3.8 $N^{2} 5$ $2^{243}Cm^{3}$ 0.13 5.8 $2^{240}Pu$ 126.42 117.2 3.8 $N^{2} 6$ $2^{240}Pu$ 0.66 4.7 <		²³¹ Pa	417	0.051	
N₂ 1 2 ³³ U 0.10 0.20 $2^{234}U$ 0.045 0.045 N₂ 2 2^{23} Np 408 360.2 4.7 2^{239} Pu 0.39 2.39 0.39 4.7 N₂ 2 2^{238} Pu 0.414 0.36 2.7.6 4.7 2^{239} Pu 109.02 90.8 2.47 4.7 2^{249} Pu 0.207 0.57 13.8 2^{242} Pu 0.0115 0.019 2.47 2^{242} Pu 0.227 0.19 2.32 2^{243} Pu 1.26 1.05 2.6 N₂ 4 2^{242} Pu 0.098 2.41 2^{242} Pu 0.098 2.41 2^{242} Pu 0.098 2.41 2^{242} Pu 0.008 2.42 2^{242} Pu 0.042 117.2 2^{242} Pu 0.008 2.43 2^{243} Cm 0.13 3.8 2^{243} Cm 0.03 3.7 2^{243} Pu 0.60 2.6 2^{243} Pu 0.60 3.3	No 1	²³³ Pa		0.70	0.26
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	J12 I	²³³ II		65	0.20
2^{234} U 0.360 N≥ 2 2^{237} Np 2^{238} Pu 408 360.2 27.6 4.7 2^{239} Pu 0.414 0.39 360.2 27.6 4.7 2^{239} Pu 0.414 0.39 360.2 27.6 4.7 2^{239} Pu 0.414 0.39 360.2 2138 Pu 4.7 2^{249} Pu 0.414 0.36 90.8 360.2 2139 Pu 4.7 2^{249} Pu 0.0115 0.019 0.042 360.2 2^{249} Pu 0.207 0.57 0.019 3.8 2^{249} Pu 0.215 109.0 0.042 5.8 2^{249} Pu 1.26 1.05 1.05 3.8 2^{249} Pu 1.26 1.05 1.05 3.8 2^{249} Pu 1.26.42 117.2 0.049 3.8 2^{243} Cm 3 0.13 3.8 2^{243} Cm 3 0.50 0.50 3.8 2^{243} Cm 4 129 110.5 3.8 2^{243} Cm 3 0.011 3.3 N_2 6 2^{249} Cm 4 0.011 3.3 N_2 7 2		²³⁴ U		0.045	
№ 2 $\frac{237}{238}$ Pu 408 360.2 4.7 $\frac{239}{238}$ Pu 0.414 0.39 0.39 № 3 $\frac{239}{238}$ Pu 0.414 0.36 4.7 $\frac{239}{249}$ Pu 109.02 90.8 3 $\frac{240}{249}$ Pu 5.35 7.3 13.8 $\frac{240}{242}$ Pu 0.0115 0.019 3 $\frac{240}{242}$ Pu 0.207 0.19 3 $\frac{239}{249}$ Pu 1.26 1.05 3 $\frac{240}{242}$ Pu 124.51 109.0 5.8 $\frac{240}{242}$ Pu 0.098 3 3 $\frac{240}{242}$ Pu 126.42 117.2 3 $\frac{243}{242}$ Pu 0.042 4.3 3.8 $\frac{243}{242}$ Pu 0.049 3 3 $\frac{239}{243}$ Pu 126.42 117.2 3 3.8 $\frac{239}{243}$ Pu 0.049 3.8 4.7 $\frac{243}{245}$ Cm ⁸ 0.11 4.7 4.7 $\frac{243}{242}$ Pu 0.068 4.7 4.7 $\frac{243}{242}$ Cm 2.6 2.6 2.6 2.6		²³⁴ LI		0.045	
№ 2 $23^{5}P_{u}$ 300 300^{-6} 4.7 $2^{239}P_{u}$ 0.414 0.39 0.39 $2^{239}P_{u}$ 0.000 90.8 300^{-6} 4.7 $2^{239}P_{u}$ 0.000 90.8 300^{-6} 300^{-6} $2^{24}P_{u}$ 0.207 0.57 13.8 $2^{242}P_{u}$ 0.0115 0.019 300^{-6} $2^{242}P_{u}$ 0.227 0.19 300^{-6} $2^{242}P_{u}$ 0.227 0.19 300^{-6} $2^{242}P_{u}$ 126 1.05 300^{-6} $2^{242}P_{u}$ 0.098 300^{-6} 300^{-6} $2^{242}P_{u}$ 0.098 3.8 3.8 $2^{242}P_{u}$ 0.0049 3.8 3.8 $2^{243}Am$ 4.3 3.8 3.8 $2^{243}P_{u}$ 126.42 117.2 3.8 $2^{243}Am$ 0.13 3.8 2^{24} $N_2 6$ $\frac{2^{24}}{34m}$ 129 100.5 4.7		²³⁷ Nn	408	360.2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<u>№</u> 2	²³⁸ Pu	400	27.6	4.7
N₂ 3 2^{28} Pu 2^{39} Pu 2^{40} Pu 2^{41} Pu 2^{42} Pu 2^{42} Pu 2^{41} Pu 2^{42} Pu 2^{41} Pu 2^{42} Pu 2^{42} Pu 2^{42} Pu 2^{42} Pu 2^{42} Pu 2^{42} Pu 2^{42} Pu 2^{42} Pu 2^{43} Am 2^{43} Cm ⁸ 109.0 1.26 5.8 N₂ 5 2^{43} Am 2^{43} Cm ⁸ 0.027 0.098 0.098 0.098 N₂ 5 2^{43} Am 2^{43} Cm ⁸ 0.13 N₂ 6 2^{42} Pu 2^{42} Pu 2^{42} Pu 2^{42} Pu 2^{42} Pu 2^{43} Am 2^{43} Cm ⁸ 0.049 5.7 N₂ 6 2^{42} Pu 2^{42} Pu 2^{42} Pu 2^{42} Pu 2^{42} Pu 2^{42} Pu 2^{42} Pu 2^{42} Pu 2^{42} Pu 2^{42} Pu 2.6 3.3 N₂ 6 2^{42} Pu 2^{44} Cm 2^{44} Cm 2^{44} Cm 0.011 2.6 N₂ 7 2^{43} Am 110.31 100.9 3.3 N₂ 8 2^{44} Cm 2^{44} Cm 0.025		²³⁹ Pu		0.39	
№ 3 $\frac{239}{240}$ Pu 109.02 109.02 90.8 90.8 7.3 13.8 $\frac{240}{240}$ Pu 5.35 241Pu 0.207 0.57 0.57 13.8 $\frac{242}{242}$ Pu 0.0115 0.019 0.042 $\frac{243}{240}$ Pu 1.26 1.05 1.05 $\frac{240}{240}$ Pu 1.26 1.05 1.09.0 $\frac{240}{240}$ Pu 124.51 109.0 5.8 $\frac{240}{242}$ Pu 0.098 241 $\frac{242}{242}$ Pu 0.098 3.8 $\frac{242}{242}$ Pu 0.098 3.8 $\frac{243}{241}$ Am 0.42 117.2 $\frac{243}{243}$ Cm [×] 0.13 3.8 $\frac{243}{243}$ Cm [×] 0.50 5.7 $\frac{238}{243}$ Cm [×] 0.50 5.7 $\frac{238}{243}$ Cm [×] 0.50 5.7 $\frac{238}{243}$ Cm [×] 0.008 4.7 $\frac{242}{243}$ Am 129 110.5 $\frac{242}{242}$ Cm 2.6 2.6 $\frac{243}{243}$ Am 2.678 2.32 $\frac{243}{245}$ Cm 0.011 3.3 $\frac{244}{241}$ Am 2.678 2.32 $\frac{244}{245}$ Cm 0.0084 $\frac{244}{245}$ Cm 0.084 $\frac{244}{245}$ Cm 0.025		²³⁸ Pu	0.414	0.36	
№ 3 $\frac{2^{40}Pu}{2^{41}Pu}$ $0.535}{0.207}$ 7.3 13.8 $\frac{2^{41}Pu}{2^{42}Pu}$ 0.207 0.57 0.042 $\frac{2^{35}Pu}{2^{42}Pu}$ 0.0115 0.019 0.042 $\frac{2^{35}Pu}{2^{42}Pu}$ 0.227 0.19 0.042 $\frac{2^{42}Pu}{2^{42}Pu}$ 1.26 1.05 0.098 $\frac{2^{42}Pu}{2^{42}Pu}$ 0.098 0.42 0.42 $\frac{2^{42}Pu}{2^{41}Am}$ 126.42 117.2 3.8 $\frac{2^{42}Pu}{2^{43}Cm^3}$ 0.0098 0.42 0.098 $\frac{2^{42}Pu}{2^{42}Pu}$ 126.42 117.2 3.8 $\frac{2^{42}Pu}{2^{43}Cm^3}$ 0.0049 0.50 5.7 $\frac{2^{39}Pu}{2^{239}Pu}$ 0.008 4.7 4.7 $\frac{2^{23}Pu}{2^{42}Pu}$ 0.008 4.7 4.7 $\frac{2^{24}Qu}{2^{42}Pu}$ 1.6 4.7 4.7 $\frac{2^{42}Pu}{2^{42}Pu}$ 1.6 4.7 2.6 $\frac{2^{42}Cm}{2^{42}Cm}$ 0.011 2.6 2.6 3.3 $N_{2} 7$ $\frac{2^{43}Cm}{2^{42}Cm}$ 0.011 2.6		²³⁹ Pu	109.02	90.8	
№ 3 $2^{241}Pu$ 0.007 0.57 13.8 $2^{42}Pu$ 0.0115 0.019 0.042 $2^{41}Am$ 0.042 0.042 $2^{238}Pu$ 0.227 0.19 $2^{39}Pu$ 1.26 1.05 $2^{41}Am$ 7.9 5.8 $2^{42}Pu$ 0.098 $2^{42}Pu$ 0.098 $2^{42}Pu$ 0.098 $2^{41}Am$ 0.42 $2^{42}Pu$ 0.098 $2^{41}Am$ 0.42 Ne 5 $2^{43}Am$ 0.43 $2^{42}Pu$ 126.42 117.2 Ne 5 $2^{43}Am$ 0.13 $2^{37}Np$ 0.50 5.7 $2^{39}Pu$ 0.008 4.7 $2^{42}Pu$ 1.6 4.7 $2^{42}Mm$ 129 110.5 $2^{42}Mm$ 0.05 2.6 $2^{42}Cm$ 2.6 2.6 $2^{42}Cm$ 0.011 3.3 $2^{42}Cm$ 0.0113 5.48 $2^{44}Cm$ 0.0113 5.48 $2^{45}Cm$		²⁴⁰ Pu	5 35	73	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>№</u> 3	²⁴¹ Pu	0.207	0.57	13.8
2^{41} Am 0.0113 0.042 2^{238} Pu 0.227 0.19 2^{39} Pu 1.26 1.05 2^{40} Pu 124.51 109.0 2^{41} Pu 7.9 5.8 2^{42} Pu 0.098 241 2^{42} Pu 0.042 109.0 2^{42} Pu 0.098 241 2^{42} Pu 0.098 241 2^{42} Pu 126.42 117.2 $N^{\underline{2}}$ 5 2^{243} Am 4.3 3.8 2^{243} Cm ^x 0.13 0.049 2^{237} Np 0.50 5.7 2^{39} Pu 0.068 4.7 2^{39} Pu 0.068 4.7 2^{42} Am 129 110.5 2^{42} Ma 1.6 4.7 2^{42} Am 0.05 242 2^{42} Am 0.05 242 2^{42} Am 0.011 5.4 2^{42} Am 0.0113 5.48 2^{42} Cm 0.013 5.48 2^{42} Cm 0.084 2^{42} Cm 0.084 <td></td> <td>²⁴²Pu</td> <td>0.0115</td> <td>0.019</td> <td></td>		²⁴² Pu	0.0115	0.019	
N≥ 4 2^{38} Pu 2^{39} Pu 2^{39} Pu 1.26 0.19 1.05 N≥ 4 2^{240} Pu 2^{41} Pu 2^{41} Pu 124.51 109.0 7.9 5.8 N≥ 5 2^{42} Pu 2^{41} Am 0.098 0.42 5.8 N≥ 5 2^{243} Pu 2^{243} Cm [×] 126.42 117.2 0.13 3.8 N≥ 5 2^{243} Cm [×] 0.13 3.8 N≥ 6 2^{242} Pu 2^{243} Cm [×] 0.0049 0.008 4.7 N≥ 6 2^{242} Pu 2^{242} Pu 2^{239} Pu 2^{422} Pu 0.008 1.6 4.7 N≥ 6 2^{242} Mam 2^{42} Pu 2^{42} Pu 0.013 3.3 N≥ 6 2^{243} Am 2^{42} Pu 2^{42} Pu 0.011 2^{42} Pu 2^{42} Cm 3.3 N≥ 7 2^{38} Pu 2^{42} Cm 2^{45} Cm 0.0113 2.678 5.48 2.32 2.32 3.3 N≥ 7 2^{43} Am 2^{45} Cm 2^{45} Cm 129 107.6 0.084 4.5		241 A m	0.0115	0.017	
№ 4 $\frac{2^{39}}{2^{40}}$ Pu 1.26 1.05 1240 124.51 109.0 5.8 241Pu 7.9 5.8 242Pu 0.098 0.42 241Am 0.42 117.2 Ne 5 243Am 4.3 3.8 242Pu 0.042 117.2 Ne 5 243Am 0.13 3.8 243Cm ^x 0.13 0.13 243Pu 0.049 5.7 237Np 0.50 5.7 239Pu 0.08 4.7 237Np 0.008 4.7 237Np 0.50 5.7 238Pu 5.7 3.8 242Pu 1.6 4.7 242mAm 1.7 243Am 242mAm 0.05 2.6 242mAm 2.678 2.32 242Mam 0.0113 5.48 243Cm 0.0113 5.48 243Cm 0.0113 5.48 245Cm 0.084 0.084		²³⁸ Pu	0.227	0.042	
№ 4 $\frac{240}{24}$ Pu 1.20 1.00 5.8 № 4 $\frac{241}{2}$ Pu 124.51 109.0 5.8 $\frac{242}{2}$ Pu 0.098 0.42 0.42 № 5 $\frac{243}{2}$ Am 0.42 117.2 3.8 № 5 $\frac{243}{2}$ Cm ^x 0.13 3.8 $\frac{243}{2}$ Cm ^x 0.13 0.13 100.99 $\frac{233}{2}$ U 0.0499 5.7 3.8 $\frac{237}{23^3}$ Pu 0.50 5.7 3.8 $\frac{239}{2^{39}$ Pu 0.08 4.7 4.7 $\frac{242}{2}$ Cm 110.5 4.7 4.7 $\frac{242}{24^3}$ Am 129 110.5 4.7 $\frac{242}{2}$ MAm 2.66 2.6 3.3 № 7 $\frac{238}{243}$ Pu 0.011 3.3 $\frac{242}{24}$ Cm 0.0113 5.48 3.3 № 7 $\frac{243}{4}$ Am 100.9 3.3 № 8 $\frac{244}{245}$ Cm 0.084 4.5 № 8 $\frac{244}{245}$ Cm 2.9 4.5		²³⁹ Pu	1.26	1.05	
No 4 10 124.51 100.00 5.8 $2^{41}Pu$ 7.9 0.098 0.098 $2^{41}Am$ 0.42 0.42 No 5 243 Am 4.3 3.8 $2^{42}Pu$ 126.42 117.2 3.8 No 5 243 Am 4.3 3.8 $2^{43}Cm^x$ 0.13 0.049 $2^{37}Np$ 0.50 5.7 $2^{39}Pu$ 0.08 4.7 $2^{242}Cm$ 110.5 4.7 $2^{242}Mam$ 129 110.5 $2^{42}Mam$ 129 110.5 $2^{42}Cm$ 2.6 2.6 No 7 $2^{38}Pu$ 0.11 3.3 $2^{42}Cm$ 2.6 3.3 No 7 $2^{38}Pu$ 0.11 3.3 $2^{44}Cm$ 0.0113 5.48 3.3 $No 7$ $2^{43}Am$ 110.31 100.9 3.3 $No 8$ $2^{44}Cm$ 0.0113 5.48 3.45 $No 8$ $2^{44}Cm$ 0.025 3.45		²⁴⁰ P 1	124 51	1.05	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>N</u> ⁰ 4	²⁴¹ D u	124.31	7 0	5.8
2^{41} Am 0.600 2^{42} Pu 126.42 117.2 N_{2} 5 2^{43} Am 4.3 3.8 2^{43} Cm ^x 0.13 0.13 2^{34} U 0.049 3.8 2^{37} Np 0.50 5.7 2^{39} Pu 5.7 3.8 2^{242} Pu 1.6 4.7 2^{42} Pu 1.6 4.7 2^{42} Pu 1.6 4.7 2^{42} Mm 129 110.5 2^{42} Mm 2.6 2.6 2^{42} Am 2.678 2.32 N_{2} 7 2^{43} Am 2.678 2.32 N_{2} 7 2^{43} Am 110.31 100.9 3.3 N_{2} 7 2^{43} Am 0.0113 5.48 2^{44} Cm 0.0113 5.48 3.45 N_{2} 8 2^{45} Cm 0.084 4.5		²⁴² Pu		0.098	
N₂ 5 2^{42} Pu 126.42 117.2 N₂ 5 2^{43} Am 4.3 3.8 2^{43} Cm ^x 0.13 0.13 2^{34} U 0.049 0.50 2^{37} Np 0.50 5.7 2^{39} Pu 0.08 4.7 2^{242} Pu 1.6 4.7 2^{42} Pu 1.6 4.7 2^{42} Pu 1.6 4.7 2^{42} Pu 1.6 4.7 2^{42} Mm 129 110.5 2^{42} Cm 2.6 2.6 2^{42} Cm 0.011 3.3 N₂ 7 2^{38} Pu 0.011 2^{41} Am 2.678 2.32 N₂ 7 2^{34} Am 110.31 100.9 3.3 2^{42} Cm 0.0113 5.48 3.4 2^{45} Cm 0.084 3.4 3.4 N₂ 8 2^{45} Cm 2.9 4.5		241 A m		0.098	
№ 5 ^{243}Am 4.3 3.8 $^{243}Cm^x$ 0.13 0.13 ^{234}U 0.049 0.50 ^{238}Pu 5.7 0.08 ^{239}Pu 0.08 4.7 ^{242}Pu 1.6 4.7 ^{242}Mm 10.5 4.7 ^{242}Mm 1.6 4.7 ^{242}Mm 1.6 4.7 ^{242}Mm 1.6 4.7 ^{242}Mm 2.6 2.6 ^{242}Cm 2.6 3.3 ^{242}Cm 0.011 3.3 ^{242}Cm 0.011 3.3 ^{242}Cm 0.0113 100.9 3.3 ^{241}Am 2.678 2.32 3.3 ^{242}Cm 0.0113 5.48 3.4 ^{245}Cm 0.084 4.5 3.45 ^{242}Cm 129 107.6 4.5 ^{245}Cm 2.9 4.5 3.45		²⁴² Pu	126.42	117.2	
$3 \frac{2}{2}$ 3 $2^{43} Cm^x$ 0.13 $2^{234} U$ 0.049 $2^{37} Np$ 0.50 $2^{38} Pu$ 5.7 $2^{39} Pu$ 0.08 $2^{242} Pu$ 1.6 $2^{42} Pu$ 1.6 $2^{42} Mm$ 1.6 $2^{42} Mm$ 1.6 $2^{42} Mm$ 1.7 $2^{42} Mm$ 2.6 $2^{42} Cm$ 2.6 $2^{42} Cm$ 0.11 $2^{43} Am$ 0.05 $2^{42} Cm$ 0.11 $2^{42} Cm$ 0.011 $2^{42} Cm$ 0.011 $2^{41} Am$ 2.678 2.32 $N_{\mathfrak{P}$ 7 $2^{38} Pu$ 0.011 $2^{44} Cm$ 0.0113 5.48 $2^{44} Cm$ 0.013 5.48 $2^{45} Cm$ 0.084 0.025	No 5	$^{243}\Delta m$	120.42	/ 3	38
N≥ 6 2^{34} U 0.049 2^{37} Np 0.50 2^{38} Pu 5.7 2^{39} Pu 0.08 2^{42} Pu 1.6 2^{42} Mm 129 10.5 4.7 2^{42} MAm 1.7 2^{43} Am 0.05 2^{42} Cm 2.6 2^{41} Am 2.678 2^{43} Am 0.011 2^{43} Am 110.31 2^{43} Cm 0.084 2^{44} Cm 0.0113 2^{44} Cm 0.0113 2^{44} Cm 129 0.084 4.5 N 8 2^{245} Cm 2.9 4.5	512 5	$^{243}Cm^{X}$		0.13	5.0
N≥ 6 2^{37} Np 0.0049 2^{38} Pu 0.50 2^{39} Pu 5.7 2^{39} Pu 0.08 2^{39} Pu 1.6 2^{42} Pu 1.6 2^{42} Pu 1.6 2^{42} Pu 1.7 2^{42} Rm 0.05 2^{42} Cm 2.6 2^{42} Cm 0.11 2^{41} Am 2.678 2^{42} Cm 0.11 2^{41} Am 2.678 2^{42} Cm 0.011 2^{42} Cm 0.0113 2^{42} Cm 0.0113 2^{44} Cm 0.0113 2^{44} Cm 0.0113 2^{44} Cm 0.025		²³⁴ L1		0.15	
№ 6 2^{38} Pu 5.7 2^{39} Pu 0.08 2^{39} Pu 0.08 2^{32} Pu 1.6 2^{42} Pu 1.6 2^{41} Am 129 2^{42m} Am 1.7 2^{42} Cm 2.6 2^{42} Cm 0.11 2^{42} Cm 0.11 2^{42} Cm 0.11 2^{42} Cm 0.011 2^{42} Cm 0.011 2^{42} Cm 0.0113 2^{42} Cm 0.0113 2^{43} Am 110.31 0.084 0.084 2^{44} Cm 129 N_{2} 8 2^{44} Cm 2^{44} Cm 0.0113 5.48 2.9 0.084 4.5		²³⁷ Np		0.049	
№ 6 2^{39} Pu 0.08 4.7 2^{42} Pu 1.6 4.7 2^{41} Am 129 110.5 2^{42m} Am 1.7 0.05 2^{42} Cm 2.6 2.6 2^{42} Cm 0.11 1.7 2^{42} Cm 2.678 2.32 N^{b} 7 2^{38} Pu 0.11 2^{41} Am 2.678 2.32 N^{b} 7 2^{43} Am 110.31 100.9 3.3 2^{42} Cm 0.0113 5.48 3.3 2^{45} Cm 0.084 4.5 N^{b} 8 2^{42} Cm 129 107.6 N^{b} 8 2^{45} Cm 2.9 4.5		²³⁸ Pu		5 7	
№ 6 242 Pu 1.6 4.7 241 Am 129 110.5 4.7 242m Am 1.7 0.05 4.7 242 Mm 2.6 0.05 4.7 242 Cm 2.6 0.05 4.7 242 Cm 2.6 0.05 4.7 242 Cm 2.6 3.3 3.3 241 Am 2.678 2.32 3.3 241 Cm 0.0113 100.9 3.3 244 Cm 0.0113 5.48 4.5 244 Cm 129 107.6 4.5 244 Cm 2.9 4.5 4.5 245 Cm 0.025 4.5		²³⁹ Pu		0.08	
3^{12} 0 2^{41} Am 129 110.5 2^{42m} Am 129 110.5 2^{42m} Am 1.7 2^{43} Am 0.05 2^{42} Cm 2.6 2^{42} Cm 0.11 2^{42} Cm 2.6 2^{42} Cm 0.11 2^{42} Am 110.31 2^{43} Am 110.31 2^{44} Cm 0.0113 2^{45} Cm 0.084 N₂ 8 2^{44} Cm 2^{44} Cm 129 107.6 2.9 4.5	No 6	²⁴² Pu		1.6	47
^{242m}Am 123 110.3 ^{242m}Am 1.7 ^{243}Am 0.05 ^{242}Cm 2.6 ^{242}Cm 0.11 ^{242}Am 2.678 ^{242}Am 100.9 ^{243}Am 110.31 ^{243}Am 110.31 ^{244}Cm 0.0113 ^{244}Cm 0.0113 ^{245}Cm 0.084 ^{244}Cm 129 $N_{2} 8$ ^{245}Cm ^{244}Cm 0.025	512 0	²⁴¹ Am	129	110.5	/
2^{43} Am 0.05 2^{42} Cm 2.6 2^{42} Cm 0.11 2^{41} Am 2.678 2.32 2^{43} Am 110.31 100.9 3.3 2^{44} Cm 0.0113 5.48 2^{44} Cm 0.0113 5.48 2^{45} Cm 0.084 4.5 № 8 2^{45} Cm 2.9 4.5		$^{242m}\Delta m$	127	17	
^{242}Cm 2.6 ^{242}Cm 2.6 ^{242}Am 0.11 ^{241}Am 2.678 2.32 ^{243}Am 110.31 100.9 3.3 ^{244}Cm 0.0113 5.48 ^{245}Cm 0.084 0.084 № 8 ^{245}Cm 2.9 4.5		$^{243}\Delta m$		0.05	
N≥ 7 2^{38} Pu 2^{41} Am 2^{41} Am 2^{42} Am 2^{43} Am 2^{43} Cm 2^{44} Cm 2^{44} Cm 2^{45} Cm 2^{44} Cm 2^{44} Cm 2^{44} Cm 2^{45} Cm 2^{44} Cm 2^{45} Cm 2^{45} Cm 2.32 3.3 N≥ 8 2^{44} Cm 2^{45} Cm 2^{45} Cm 2.9 4.5		²⁴² Cm		2.6	
№ 7 ^{241}Am 2.678 2.32 ^{243}Am 110.31 100.9 3.3 ^{244}Cm 0.0113 5.48 ^{245}Cm 0.084 ^{244}Cm 129 ^{244}Cm 2.9 ^{244}Cm 0.025		²³⁸ P11		0.11	
№ 7 ^{243}Am 110.31 100.9 3.3 ^{244}Cm 0.0113 5.48 0.084 ^{245}Cm 0.084 0.084 № 8 ^{244}Cm 129 107.6 ^{245}Cm 2.9 4.5 ^{246}Cm 0.025		²⁴¹ Am	2 678	2 32	
^{244}Cm ^{245}Cm 10001 10001 10001 ^{244}Cm $^{0.0113}$ $^{5.48}$ ^{245}Cm $^{0.084}$ № 8 ^{245}Cm ^{245}Cm ^{246}Cm $^{2.9}$ $^{4.5}$	№ 7	²⁴³ Am	110 31	100.9	33
245 Cm 0.0110 0.084 244 Cm 129 107.6 № 8 ²⁴⁵ Cm 2.9 4.5 246 Cm 0.025 0.025 0.025		²⁴⁴ Cm	0.0113	5 48	
№ 8 244 Cm 129 107.6 245 Cm 2.9 4.5		²⁴⁵ Cm	0.0115	0.084	
№ 8 $\begin{bmatrix} 245 \text{Cm} \\ 246 \text{Cm} \\ 246 \text{Cm} \end{bmatrix}$ 127 107.0 4.5		²⁴⁴ Cm	129	107.6	
$\frac{240}{246}$ Cm 0.025	No 8	²⁴⁵ Cm	127	29	45
	J1≌ O	²⁴⁶ Cm		0.025	

Table 7. The calculation estimations of characteristics MA samples, irradiated in BOR-60