Comparison of Inert-Matrix Fuels for Actinide Recycling

John A. Stillman, Dimitri G. Naberezhnev, Temitope A. Taiwo, Won Sik Yang (*Argonne National Laboratory, USA*)

Louis Grenet (*Ecole de Mines,* France)

Workshop on Advanced Reactors with Innovative Fuels, Oak Ridge, TN, USA February 16-18, 2005

A

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

Outline

- Background
 - Actinide management in nuclear fuel cycle
- Inert-Matrix Fuels
- Analysis Methods
- Results
 - Reactivity letdown
 - Nuclide consumption
 - Repository loading benefit
 - Reactivity coefficients
- Conclusions

Actinide Management in Nuclear Fuel Cycle

- Advanced Fuel Cycle Initiative is investigating technologies that will enable sustainability and reduce (but not eliminate) waste management burden through *actinide management in the fuel* cycle
- Current U. S. fuel cycle is once-through UO₂, directly-disposed in a geologic repository (Yucca Mountain)
- The drift loading for the direct disposal of typical spent PWR fuel is constrained by the peak temperature (< 96 °C) midway between adjacent storage tunnels
 - Rock temperature is raised by the decay energy released from the time of repository closure to the time of peak temperature
 - Dominant contributors are the actinide elements
 - Am-241 (created by the decay of Pu-241 in storage) & other isotopes of plutonium
 - fission products contribute <5% to integrated decay heat

ARWIF 2005

Repository Transient Thermal Response: Direct Disposal of PWR Spent Fuel

Fechnology

Contributors to Spent PWR Fuel Decay Heat

Actinide Management Options

- Production rate of key heat-producing actinides can be reduced through advanced technologies
 - Higher-burnup LEU
 - Actinide recycling in LWRs (MOX, IMF)
 - Higher-efficiency systems
 - Advanced systems suited for continuous recycle of actinides

Reactor System		Conversion		Dummun	Net production (kg/year/GWe)		
		efficiency	Fuel form	(GWd/MT)	Pu	Pu ²⁴¹ +Am ²⁴¹	
LWR		33%	UO ₂	50	221.9	33.7	
				100	157.0	25.5	
			MOX (Pu)	45.2	-419.7	84.8	
			IMF (Pu)	510	-1034.2	39.1	
			IMF (TRU)	510	-871.8	-61.0	
NGNP		47%	UC _{0.5} O _{1.5}	102	124.6	27.8	
LMR	CR=0.5	290/	U/TRU/Zr	118	-358.7	-48.6	
	CR=1.0	30%			0	0	

of Energ

Inert-Matrix Fuels

- Inert-matrix fuels (IMF) envisioned for weapons-grade plutonium disposition program
- Replace depleted-uranium matrix typical of MOX with neutronically-transparent, non-transuranic producing matrix material
 - Eliminate in-reactor production of plutonium from uranium conversion
- In <u>solid-solution fuels</u> (SSF) transuranics form a single phase with the inert-matrix
- In <u>CERCER dispersion fuels</u> ceramic fuel particles are dispersed in a ceramic material matrix
- In <u>CERMET dispersion fuels</u> ceramic fuel particles are dispersed in a metallic matrix

	Matrix	Advantages	Disadvantages	
SSF ZrO ₂ - 8.6Y ₂ O ₃		 Easier fabrication 	 Low thermal conductivity Poor aqueous recycle potential 	
CERCER	SiC	 Good thermal conductivity 	 Particle volume fraction <30% for all dispersion fuels SiC reaction with Zircalloy 	
	ZrH _{1.6}	 Additional moderation softens spectrum Good thermal conductivity 	 Decomposition at temperatures >600oC 	
CERMET	Zr	 Excellent thermal conductivity Better FP retention Pyroprocess recycle potential 	 Limited experimental work 	

Evaluation of Inert-Matrix Fuel Forms

- Systematic comparison of various inert-matrix fuel forms in LWRs
- Focus on Pu+Am recycling
- Assume assembly design parameters similar to typical PWR assembly

	Dispersion Fuels with SiC-Coating			Dispersion Fuels with Nb-Coating			Solid Solution Fuel		
Fuel kernel diameter (µm)	500		500			N/A			
Fuel particle coating thickness (µm)100			10			N/A			
Particle volume fraction	10% 20% 30%		30%	4.1%	8.2%	12.3%	N/A		
Fuel volume fraction	3.6%	7.3%	10.9%	3.6%	7.3%	10.9%	3.6%	7.3%	10.9%
Linear power (kW/m)	16.1		16.1		16.1				
Specific power (W/kgHM)	872.4	436.2	290.8	872.4	436.2	290.8	872.4	436.2	290.8

of Energ

Methodology

- Calculations to be performed with WIMS8 lattice depletion code
 - 172-group, JEF2.2-based library
 - Collision probabilities calculated for randomly distributed particles
 - Evaluate heterogeneity (self-shielding) effect
- Heterogeneity effect for dispersion fuels ranges from 3% to 1% ∆k
 - Decreases with increasing fuel volume fraction
 - Decreases with decreasing fuel particle size
 - Not insignificant -
 - $1\%\Delta k \sim 30$ full-power days
 - Effect on nuclide depletion

Gap Clad (Zircaloy-4) R = 0.4178 cmR = 0.4750 cmFuel pellet (TRU)O R=0.4096 cm SiC coating Water $R=0.07108 \,\mathrm{cm}$

> Schematic of Cylindrical IMF Pin with Dispersion Fuel

> > 10

of Energy

ARWIF 2005

Heterogeneity Effect in Dispersion Fuels

Heterogeneity Effect in Dispersion Fuels

Reactivity Letdown of IMF Fuels

- **Reactivity letdown similar** to UO₂ through 1,000 FPD
 - Rapid k_{inf} drop-off after 1,000 FPD will yield uneven power sharing
- ZrH has higher BOL k_{inf} and greater burnup reactivity kinf loss
- **Burnup reactivity loss** lowest for solid solution fuel
- Particle coating has little effect on reactivity

Nuclide Consumption

- Generally better in dispersion fuels
- Relatively insensitive to dispersion fuel matrix
- Even less sensitive to particle coating
- For given burnup, decreasing fuel volume fraction increases consumption 2.0

U.S. Department

Repository Loading Benefit from IMF

- Loading to meet repository thermal criteria estimated for "oncethrough then out" (OTTO) strategy
- Decay heat contribution from key actinides (Am-241, Pu-238, Pu-239, Pu-240) integrated from 100-1250 years after discharge; total relative to direct-disposed UO₂ is the estimated loading benefit
- Benefit for given burnup marginally better for ZrH matrix
 - SSF provides least benefit
- Benefit with Np recycling reduced from increased Pu-238 in waste

Repository Loading Benefit Estimates for IMF (7.29% FVF, 436 GWd/MT)

Coating	Matrix	Loading Benefit
	SiC	1.418
SiC	Zr	1.424
	ZrH	1.442
	SiC	1.418
Nb	Zr	1.425
	ZrH	1.446
	(Zr,Y _{1.33})O ₂	1.377
N/A	ZrO ₂ , 8.87%Pu+Np+Am MOX.	1.270
	12wt.%Pu+Am, 51 GWd/MT	1.122

U.S. Departmen

Repository Loading Benefit from "OTTO" Strategy

	TRU	Decay Heat Integrated from 100-1250 Years (Watt-years/GWd)				Loading	
Matrix	V.F.	Pu238	Pu239	Pu240	Am241	Benefit	
UO ₂	4.3wt.% U-235	202.8	260.7	445.8	1,821.6		
	3.64%	276.2	36.8	358.1	1,128.2	1.503	
SiC	7.29%	295.6	41.8	333.2	1,237.7	1.418	
	10.93%	308.8	43.5	320.9	1,247.7	1.409	
	3.64%	276.1	36.9	358.8	1,123.7	1.506	
Zr	7.29%	295.1	41.8	334.5	1,228.9	1.424	
	10.93%	308.2	43.6	322.3	1,237.9	1.416	
	3.64%	270.5	33.5	378.8	1,056.6	1.555	
ZrH	7.29%	291.4	38.4	345.8	1,199.7	1.442	
	10.93%	309.4	40.4	324.6	1,252.7	1.404	
	3.64%	284.2	38.7	328.1	1,264.5	1.411	
(Zr,Y _{1.33})O ₂	7.29%	301.6	41.5	315.5	1,305.6	1.377	
	10.93%	313.6	43.9	311.6	1,295.8	1.377	
MOX	12.0wt.%	319.0	145.0	387.6	1,572.1	1.122	

ARWIF 2005

Repository Loading Benefit

- Lower fuel volume fraction in IMF increases repository benefit for "OTTO" strategy at a given discharge burnup
- Benefit rises sharply at higher burnup from Pu-238 consumption, but reactivity may be too low to achieve these burnup levels

Reactivity Coefficients

Fuel Temperature (FTC) and Coolant Void Coefficients (CVC) at BOL									
En al V E		FTC (pcm/°K)	CVC (pcm/% void)						
ruei v.r.	Matrix		20% Voiding, 1500 ppm	99% Voiding, 1500 ppm					
4.3wt.% U ²³⁵	UO ₂	-1.88	-22.1	-567.5					
	SiC	-0.60	+18.7	+39.5					
2 6 4 0/	Zr	-0.53	+8.2	-103.8					
5.04%	ZrH _{1.6}	-1.11	+57.1	+13.3					
	$(Zr, Y_{1,33})O_2$	-0.76	-27.0	-83.6					
	SiC	-0.71	-24.2	+117.7					
7 200/	Zr	-0.65	-31.4	+84.1					
1.29%	ZrH _{1.6}	-1.58	-6.8	-32.7					
	$(Zr, Y_{1,33})O_2$	-0.71	-44.2	+63.0					
	SiC	-0.73	-15.6	+163.8					
10.020/	Zr	-0.69	-20.8	+162.2					
10.93%	ZrH _{1.6}	-1.51	-22.1	-13.1					
	$(Zr, Y_{1,33})O_2$	-0.65	-26.3	+135.9					

ARWIF 2005

of Energy

Reactivity Coefficients

ARWIF 2005

Science and

Technology

Conclusions

- Relative to direct disposal of spent UO₂ fuel, Pu+Am recycling in IMF provides additional benefit for repository loading
- For fuel forms considered, consumption of key actinides is relatively insensitive to matrix material or particle coating
- Repository loading benefit is marginally better for ZrH matrix
- Heterogeneity effect in dispersion fuels is important for transmutation modeling
- For given burnup, benefit is greatest with lower fuel volume fraction
 - Loading benefit increases with fuel burnup, but higher burnup levels may not be achievable because of rapidly declining reactivity
- Reactivity coefficients must be more closely evaluated
 - Coolant void coefficient is positive for some cases, but addition of burnable poisons or heterogeneous core (assembly) design will yield lower values

