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Outline
• Background

- Actinide management in nuclear fuel cycle
• Inert-Matrix Fuels
• Analysis Methods
• Results

- Reactivity letdown
- Nuclide consumption
- Repository loading benefit
- Reactivity coefficients

• Conclusions
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Actinide Management in Nuclear Fuel Cycle
• Advanced Fuel Cycle Initiative is investigating technologies that 

will enable sustainability and reduce (but not eliminate) waste 
management burden through actinide management in the fuel 
cycle

• Current U. S. fuel cycle is once-through UO2, directly-disposed in a 
geologic repository (Yucca Mountain) 

• The drift loading for the direct disposal of typical spent PWR fuel 
is constrained by the peak temperature (< 96 oC) midway between 
adjacent storage tunnels
- Rock temperature is raised by the decay energy released from the

time of repository closure to the time of peak temperature 
- Dominant contributors are the actinide elements

- Am-241 (created by the decay of Pu-241 in storage) & other 
isotopes of plutonium

- fission products contribute <5% to integrated decay heat
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Repository Transient Thermal Response: 
Direct Disposal of PWR Spent Fuel
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Contributors to Spent PWR Fuel Decay Heat
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Actinide Management Options
• Production rate of key heat-producing actinides can be reduced 

through advanced technologies
- Higher-burnup LEU
- Actinide recycling in LWRs (MOX, IMF)
- Higher-efficiency systems
- Advanced systems suited for continuous recycle of actinides

Net production (kg/year/GWe)
Reactor 
System

Conversion 
efficiency Fuel form

Burnup 
(GWd/MT) Pu Pu241+Am241

50 221.9 33.7

100 157.0 25.5

MOX (Pu) 45.2 -419.7 84.8

IMF (Pu) 510 -1034.2 39.1

IMF (TRU) 510 -871.8 -61.0

NGNP 47% UC0.5O1.5 102 124.6 27.8

CR=0.5 118 -358.7 -48.6

CR=1.0 0 0
38% U/TRU/ZrLMR

UO2

LWR 33%
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Inert-Matrix Fuels
• Inert-matrix fuels (IMF) envisioned for weapons-grade plutonium 

disposition program
• Replace depleted-uranium matrix typical of MOX with 

neutronically-transparent, non-transuranic producing matrix 
material
- Eliminate in-reactor production of plutonium from uranium 

conversion
• In solid-solution fuels (SSF) transuranics form a single phase 

with the inert-matrix
• In CERCER dispersion fuels ceramic fuel particles are dispersed 

in a ceramic material matrix
• In CERMET dispersion fuels ceramic fuel particles are dispersed 

in a metallic matrix
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Inert-Matrix Fuels
Matrix Advantages Disadvantages

SSF ZrO2-
8.6Y2O3

• Easier fabrication • Low thermal conductivity
• Poor aqueous recycle 

potential

SiC
• Good thermal conductivity • Particle volume fraction 

<30% for all dispersion fuels
• SiC reaction with Zircalloy

CERCER

ZrH1.6

• Additional moderation 
softens spectrum

• Good thermal conductivity

CERMET Zr

• Excellent thermal 
conductivity

• Better FP retention
• Pyroprocess recycle 

potential

• Limited experimental work

• Decomposition at 
temperatures >600oC
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Evaluation of Inert-Matrix Fuel Forms
• Systematic comparison of various inert-matrix fuel forms in LWRs 
• Focus on Pu+Am recycling
• Assume assembly design parameters similar to typical PWR 

assembly

  
Dispersion Fuels 
with SiC-Coating 

Dispersion Fuels with 
Nb-Coating Solid Solution Fuel 

Fuel kernel diameter 
(µm) 500 500 N/A 

Fuel particle coating 
thickness (µm) 100 10 N/A 

Particle volume 
fraction  10% 20% 30% 4.1% 8.2% 12.3% N/A 

Fuel volume 
fraction  3.6% 7.3% 10.9% 3.6% 7.3% 10.9% 3.6% 7.3% 10.9%

Linear power 
(kW/m) 16.1 16.1 16.1 

Specific power 
(W/kgHM) 872.4 436.2 290.8 872.4 436.2 290.8 872.4 436.2 290.8 
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Methodology
• Calculations to be performed with WIMS8 lattice depletion code

- 172-group, JEF2.2-based library
- Collision probabilities calculated for randomly distributed particles
- Evaluate heterogeneity (self-shielding) effect

 

Clad (Zircaloy-4) 
R= 0.4750 cm 

Water
R=0. 0.7108 cm 

Gap
R= 0.4178 cm 

(TRU)O2 

SiC coating 

Fuel pellet 
R=0.4096 cm 

Schematic of Cylindrical IMF Pin 
with Dispersion Fuel

• Heterogeneity effect for 
dispersion fuels ranges from 
3% to 1% ∆k
- Decreases with increasing fuel 

volume fraction
- Decreases with decreasing 

fuel particle size
- Not insignificant

- 1%∆k ~ 30 full-power days
- Effect on nuclide depletion
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Heterogeneity Effect in Dispersion Fuels
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Heterogeneity Effect in Dispersion Fuels
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Reactivity Letdown of IMF Fuels
• Reactivity letdown similar 

to UO2 through 1,000 FPD
- Rapid kinf drop-off after 

1,000 FPD will yield 
uneven power sharing

• ZrH has higher BOL kinf and 
greater burnup reactivity 
loss

• Burnup reactivity loss 
lowest for solid solution 
fuel

• Particle coating has little 
effect on reactivity
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Nuclide Consumption
• Generally better in dispersion fuels
• Relatively insensitive to dispersion fuel matrix
• Even less sensitive to particle coating
• For given burnup, decreasing fuel volume fraction increases 

consumption
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Repository Loading Benefit from IMF

• Loading to meet repository thermal 
criteria estimated for “once-
through then out” (OTTO) strategy

• Decay heat contribution from key 
actinides (Am-241, Pu-238, Pu-239, 
Pu-240) integrated from 100-1250 
years after discharge; total relative 
to direct-disposed UO2 is the 
estimated loading benefit

• Benefit for given burnup marginally 
better for ZrH matrix
- SSF provides least benefit

• Benefit with Np recycling reduced from 
increased Pu-238 in waste

Repository Loading Benefit 
Estimates for IMF

(7.29% FVF, 436 GWd/MT)

Coating Matrix
Loading
Benefit

SiC 1.418
Zr 1.424
ZrH 1.442
SiC 1.418
Zr 1.425
ZrH 1.446
(Zr,Y1.33)O2 1.377
ZrO2,
8.87%Pu+Np+Am 1.270
MOX,
12wt.%Pu+Am, 
51 GWd/MT 1.122

N/A

Nb

SiC
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Repository Loading Benefit from “OTTO”
Strategy

Decay Heat Integrated from 100-1250 Years 
(Watt-years/GWd)

Matrix
TRU 
V.F. Pu238 Pu239 Pu240 Am241

UO2 4.3wt.% U-235 202.8 260.7 445.8 1,821.6

3.64% 276.2 36.8 358.1 1,128.2 1.503

7.29% 295.6 41.8 333.2 1,237.7 1.418

10.93% 308.8 43.5 320.9 1,247.7 1.409

3.64% 276.1 36.9 358.8 1,123.7 1.506

7.29% 295.1 41.8 334.5 1,228.9 1.424

10.93% 308.2 43.6 322.3 1,237.9 1.416

3.64% 270.5 33.5 378.8 1,056.6 1.555

7.29% 291.4 38.4 345.8 1,199.7 1.442

10.93% 309.4 40.4 324.6 1,252.7 1.404

3.64% 284.2 38.7 328.1 1,264.5 1.411

7.29% 301.6 41.5 315.5 1,305.6 1.377

10.93% 313.6 43.9 311.6 1,295.8 1.377

MOX 12.0wt.% 319.0 145.0 387.6 1,572.1 1.122

(Zr,Y1.33)O2

ZrH

Zr

SiC

Loading
Benefit
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Repository Loading Benefit
• Lower fuel volume fraction in IMF increases repository benefit for 

“OTTO” strategy at a given discharge burnup
• Benefit rises sharply at higher burnup from Pu-238 consumption, 

but reactivity may be too low to achieve these burnup levels  
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Reactivity Coefficients
Fuel Temperature (FTC) and Coolant Void Coefficients (CVC) at BOL

CVC (pcm/% void)

20% Voiding, 1500 ppm

-22.1
+18.7
+8.2

+57.1
-27.0
-24.2
-31.4
-6.8

-44.2
-15.6
-20.8
-22.1
-26.3

Fuel V.F. Matrix FTC 
(pcm/oK) 99% Voiding, 1500 ppm

4.3wt.% U235 UO2 -1.88 -567.5
SiC -0.60

-0.53
-1.11
-0.76
-0.71
-0.65
-1.58
-0.71
-0.73
-0.69
-1.51
-0.65

+39.5
Zr -103.8

ZrH1.6 +13.3
(Zr,Y1.33)O2 -83.6

SiC +117.7
Zr +84.1

ZrH1.6 -32.7
(Zr,Y1.33)O2 +63.0

SiC +163.8
Zr +162.2

ZrH1.6 -13.1
(Zr,Y1.33)O2 +135.9

10.93%

3.64%

7.29%
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Reactivity Coefficients
Components of 99% Coolant Void Coefficient

(Zr,Y)O2 Solid Solution Fuel
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Conclusions
• Relative to direct disposal of spent UO2 fuel, Pu+Am recycling in IMF 

provides additional benefit for repository loading
• For fuel forms considered, consumption of key actinides is relatively 

insensitive to matrix material or particle coating
• Repository loading benefit is marginally better for ZrH matrix
• Heterogeneity effect in dispersion fuels is important for 

transmutation modeling
• For given burnup, benefit is greatest with lower fuel volume fraction

- Loading benefit increases with fuel burnup, but higher burnup levels 
may not be achievable because of rapidly declining reactivity

• Reactivity coefficients must be more closely evaluated
- Coolant void coefficient is positive for some cases, but addition of 

burnable poisons or heterogeneous core (assembly) design will yield 
lower values
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