

Workshop on Advanced Reactors With Innovative Fuels ARWIF-2005

MATERIALS PROPERTIES AND FUEL PERFORMANCE OF THE DUPIC FUEL

<u>Ho Jin Ryu</u>, Je Sun Moon, Kweon Ho Kang, Kee Chan Song, and Myung Seung Yang

16-18 Feb. 2005, Oak Ridge, Tennessee

Contents

Introduction to the DUPIC Fuel Cycle

Material Properties of the DUPIC Fuel Pellet

Performance Analysis of the DUPIC Fuel

Irradiation Test of the DUPIC Fuel

* DUPIC : <u>Direct use of spent PWR fuel in CANDU reactors</u>

Fabrication Process of DUPIC

Material Properties Characterization

Simulated DUPIC fuel

- Due to high radioactivity of spent fuel
- Inactive isotope for fission product elements

Thermal Properties

- Thermal conductivity
- Thermal expansion coefficient

Mechanical Properties

- Creep rate
- Young's modulus

Diffusion Coefficient of Fission Gas (Xe)

Thermal Properties

Thermal Expansion

Measured by Dilatometer (DIL 402C)

Thermal Conductivity

Measured by Laser Flash Method

Mechanical Properties

• Creep Rate

Measured by Compressive Creep Test

 $DUPIC < UO_2$

• Young's Modulus

Measured by Resonance Ultrasound Spectroscopy

 $DUPIC > UO_2$

Fission Gas Diffusion Property

Trace Irradiation in the HANARO reactor

- Post-irradiation annealing : 1400 ~1600°C
- Diffusion coefficient of Xe-133 : UO₂ > DUPIC
- Cation vacancy concentration change by fission products (trivalent)

Basic Sensitivity Analysis

Fuel Performance Code: ELESTRES (AECL)
Modifying ELESTRES' material models for the DUPIC

Basic Sensitivity Analysis

The change of thermal conductivity influences most strongly on fuel performance of the DUPIC fuel.

Performance Analysis

Performance Evaluation by Calculated Power Envelop

- Reference High Power Envelop
- Nominal Design Power Envelop

Higher Temperature than UO₂ but less than melting temp.
~3000 K

Ekmentlinearpower(kW/m) [em perature (K) Reference High Power Reference High Power Nom inalDesign Power Nom inalDesign Power Burnup (MW d/t) Burnup (M W d/t)

Performance Analysis

Higher fission gas release:

- Due to lower thermal conductivity and resulting higher temperature
- Results in higher internal gas pressure than coolant pressure
- Gap open and outward creep of clad
- Internal gas pressure should be reduced.

Internal Gas Pressure

One way to reduce the internal gas pressure is to give more volume for fission gases.

- Plenum
- Radial gap
- Axial gap

Orthogonal Array Design

Assignment of the levels to the factors

level	gap clearance (µm)	pellet density (g/cm ³)	<mark>grain</mark> size (μm)
1	40	10.30	5
2	80	10.45	15
3	120	10.60	25

* within manufacturing spec.

+ Assignment of the levels + 3 level OAD Table, $L_9(3^4)$

Run	factors				
	gap clearance	pellet density	error	grain size	
1	1	1	1	1	
2	1	2	2	2	
3	1	3	3	3	
4	2	1	2	3	
5	2	2	3	1	
6	2	3	1	2	
7	3	1	3	2	
8	3	2	1	3	
9	3	3	2	1	

Level-average Response Graphs

Safety Limiting Parameters

- centerline temperature
- Internal gas pressure
- hoop strain

\bullet gap & grain \uparrow , density \downarrow

Safety Margin

Comparison of Fabrication Factors' Set

- Large gap, large grain, low density
- Small gap, small grain, high density

Safety Margin Standards

- Central temperature: melting temp.
- Internal pressure: coolant pressure
- Hoop strain: 1%

Irradiation Test of DUPIC Fuel

Irradiation Test in HANARO Research Reactor (KAERI)

- Spent Fuel: discharged from Gori-1 LWR at 27,300 MWd/tU
- U-235: 1.06%, Pu: 0.51%
- Linear power: ~38 kW/m
- Discharge burnup : ~6,700 MWd/t
- Instrumentation : temp. & SPND

 Good agreement between measured centerline temperature and estimated one calculated by performance evaluation codes

International Collaboration

KOREA-CANADA-US-IAEA

- 3 DUPIC Fuel Rod Fabrication (AECL)
- Irradiation Test in the NRU Reactor
- BB03: 2000. Sep. (10 MWd/kgHM)
- BB04: 2001. Dec. (16 MWd/kgHM)
- BB02: 2003. Dec. (21 MWd/kgHM)

Performance Para.	BB03	BB04	
Midplane Burnup	10 MWd/kgHM	16 MWd/kgHM	
Max. Power	~49 kW/m	~50 kW/m	
Max. Ridge Height	0.021 mm	0.029 mm	
Residual Sheath Strain (Pellet Interface)	0.2 % to 0.3 %	0.2 % to 0.6 %	
Gas Volume	12.6 ml at STP	16.0 ml at STP	

Conclusions

- The material properties of the DUPIC fuel pellet were measured to be used in the fuel performance code for the DUPIC fuel.
- The fuel performance of the DUPIC fuel shows that the DUPIC fuel requires adjustments of fabrication parameters to guarantee safety margin during the inreactor operation.
- The irradiated DUPIC fuel shows good performance in agreement with estimation by performance evaluation codes using material properties for the DUPIC fuel.