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Concept of DUPICConcept of DUPIC
* DUPIC : Direct use of spent PWR fuel in CANDU reactors
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Fabrication Process of DUPICFabrication Process of DUPIC
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Technical Challenges

– Remote fabrication

– Remote handling

– Performance verification of 
the DUPIC fuel



Material Properties CharacterizationMaterial Properties Characterization

Simulated DUPIC fuel
– Due to high radioactivity of spent fuel
– Inactive isotope for fission product elements

Thermal Properties 
– Thermal conductivity
– Thermal expansion coefficient

Mechanical Properties
– Creep rate
– Young’s modulus

Diffusion Coefficient of Fission Gas (Xe)



Thermal PropertiesThermal Properties
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Thermal Conductivity
Measured by Laser Flash Method

DUPIC < UO2

A=0.0944,     B=2.027X10-4, 
C=4.715X109, D=16,361

Thermal Expansion
Measured by Dilatometer (DIL 402C)

DUPIC > UO2
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Mechanical Properties Mechanical Properties 

Creep Rate
Measured by Compressive Creep Test

DUPIC < UO2

Young’s Modulus
Measured by Resonance Ultrasound Spectroscopy

DUPIC > UO2
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Fission Gas Diffusion PropertyFission Gas Diffusion Property
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Trace Irradiation in the HANARO reactor
– Post-irradiation annealing : 1400 ~1600oC
– Diffusion coefficient of Xe-133 : UO2 > DUPIC
– Cation vacancy concentration change by fission products (trivalent)

He
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Vent
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Oxygen Sensor
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Basic Sensitivity AnalysisBasic Sensitivity Analysis

Fuel Performance Code: ELESTRES (AECL)
Modifying ELESTRES’ material models for the DUPIC
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Basic Sensitivity AnalysisBasic Sensitivity Analysis
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The change of thermal conductivity influences most 
strongly on fuel performance of the DUPIC fuel.



Performance AnalysisPerformance Analysis
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Performance Evaluation by Calculated Power Envelop
– Reference High Power Envelop
– Nominal Design Power Envelop

Higher Temperature than UO2 but less than melting temp.
– ~3000 K



Performance AnalysisPerformance Analysis

Higher fission gas release: 
– Due to lower thermal conductivity and resulting higher temperature
– Results in higher internal gas pressure than coolant pressure
– Gap open and outward creep of clad 

Internal gas pressure should be reduced.
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Internal Gas PressureInternal Gas Pressure

One way to reduce the internal gas pressure is to give 
more volume for fission gases. 
– Plenum 
– Radial gap
– Axial gap
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Orthogonal Array DesignOrthogonal Array Design

Assignment of the levels 
to the factors

* within manufacturing spec.

level
gap 

clearance
(µm)

pellet 
density
(g/cm3)

grain 
size
(µm)

1 40 10.30 5

2 80 10.45 15

3 120 10.60 25

3 level OAD Table, L9(34)

factors

Run gap 
clearance

pellet 
density

error grain size

1 1 1

2

3

1

2

3

1

2

3

1 1

2 1 2 2

3 1 3 3

4 2 2 3

5 2 3 1

6 2 1 2

7 3 3 2

8 3 1 3

9 3 2 1



LevelLevel--average Response Graphsaverage Response Graphs
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Safety Limiting Parameters
– centerline temperature
– Internal gas pressure
– hoop strain

gap & grain ↑, density ↓
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Safety MarginSafety Margin

Comparison of Fabrication Factors’ Set
– Large gap, large grain, low density
– Small gap, small grain, high density

Safety Margin Standards
– Central temperature: melting temp.
– Internal pressure: coolant pressure
– Hoop strain: 1%
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Irradiation Test of DUPIC FuelIrradiation Test of DUPIC Fuel
Irradiation Test in HANARO Research Reactor (KAERI)
– Spent Fuel: discharged from Gori-1 LWR at 27,300 MWd/tU
– U-235: 1.06%,  Pu: 0.51%
– Linear power: ~38 kW/m

– Discharge burnup : ~6,700 MWd/t

– Instrumentation : temp. & SPND



Measured and Calculated TemperatureMeasured and Calculated Temperature

Good agreement between measured centerline 
temperature and estimated one calculated by 
performance evaluation codes
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International CollaborationInternational Collaboration
KOREA-CANADA-US-IAEA
– 3 DUPIC Fuel Rod Fabrication (AECL)
– Irradiation Test in the NRU Reactor
– BB03: 2000. Sep. (10 MWd/kgHM)
– BB04: 2001. Dec. (16 MWd/kgHM)
– BB02: 2003. Dec. (21 MWd/kgHM)

Performance Para. BB03 BB04

Midplane Burnup 10 MWd/kgHM 16 MWd/kgHM

Max. Power ~49 kW/m ~50 kW/m

Max. Ridge Height 0.021 mm 0.029 mm

Residual Sheath 
Strain
(Pellet Interface)

0.2 % to 0.3 % 0.2 % to 0.6 %

Gas Volume 12.6 ml at STP 16.0 ml at STP



ConclusionsConclusions

The material properties of the DUPIC fuel pellet were 
measured to be used in the fuel performance code for the 
DUPIC fuel.

The fuel performance of the DUPIC fuel shows that the 
DUPIC fuel requires adjustments of fabrication 
parameters to guarantee safety margin during the in-
reactor operation. 

The irradiated DUPIC fuel shows good performance in 
agreement with estimation by performance evaluation 
codes using material properties for the DUPIC fuel.

The material properties of the DUPIC fuel pellet were 
measured to be used in the fuel performance code for the 
DUPIC fuel.

The fuel performance of the DUPIC fuel shows that the 
DUPIC fuel requires adjustments of fabrication 
parameters to guarantee safety margin during the in-
reactor operation. 

The irradiated DUPIC fuel shows good performance in 
agreement with estimation by performance evaluation 
codes using material properties for the DUPIC fuel.
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