

CHARACTERIZATION OF SILICON CARBIDE AND PYROCARBON COATINGS FOR FUEL PARTICLES FOR HIGH TEMPERATURE REACTORS (HTR)

D. Hélary^{1,2}, X. Bourrat¹, O. Dugne², G. Maveyraud^{1,2}, F. Charollais³, M. Pérez⁴, F.Cellier⁵

¹Laboratoire des Composites Thermostructuraux (LCTS), Bordeaux University - FRANCE.
 ²CEA – DEN/VRH/DTEC/STCF/LMAC, Pierrelatte - FRANCE.
 ³CEA– DEN/Cadarache/DEC/SPUA, St Paul lez Durance, - FRANCE
 ⁴CEA – DRT/Grenoble/DTEN/SMP/LPTS, Grenoble - FRANCE.
 ⁵FRAMATOME-ANP Plant Sector, Lyon - FRANCE.

AGENDA

- Background
- SiC microstructure
- PyC microstructure
- PyC/SiC interfaces
- Concluding remarks

BACKGROUND

- Reviving interest worldwide for HTR technology (co-generation, safety, rentability)
- Fuel design = key element : 1st confinement barrier for fission products

 Production and qualification of fuel particles are conducted by the CEA in collaboration with AREVA

AREVA

BACKGROUND

PyC and SiC material challenges :

- *PyC* : gas-tight and perfect isotropic texture to improve performance under irradiation
- SiC : β -SiC (cubic structure) to compensate the swelling effect due to irradiation and tight layer : fine-grained and strong grain boundaries to reduce the migration of fission products, less flaws as possible to sustain strain
- PyC/SiC interfaces : strong for mechanical synergy

AREVA

<u>Columnar grains :</u> Thickness ~ 1 μm Length ~ 4-5 μm

Finer grains in the beginning of the coating

g growth ection

Exhibition of **preferred orientation** during growth (Electron Back-Scattering Diffraction)

<111> pole parallel to the growth direction XO normal to the particle

Measuring of chlorine :

- At the extreme surface concentration : 0.43 % at. (X-ray Photoelectron Spectrometry)

- In the core layer : CI<15 ppm (EPMA)

SIC CHEMICAL ANALYSIS

SIMS DEPTH PROFILE :semi quantitative results

XPS analysis at : C 83.24 %, O 6.61 %, Si 9.72 %, Cl 0.43 %

SEM fractography

Strong grain boundaries no free C,Si and CI detected

Predominantly transgranular cleavage

Bright field TEM image

No intergranular porosity

Evidence of flaws by short etching on polished surface (reducing the SiC elastic limit)

Prevision on the cracks apparition and propagation in the layer

Evidence of crystallographic Stacking Faults (SF) by TEM Observations along the <110> β-SiC crystal direction

Bright field TEM image

HRTEM image

<u>2.00 nm</u>

<u>Very few α-SiC</u> <u>Rather "one-dimensionally-disordered" polytypes</u>

Reactions in the gas-phase :

Isotropic PyC

Direct deposition onto the surface :

Anisotropic PyC

J.L. Kaae, Carbon, 23, 6, 665-673, 1985

Agglomerated spheroids Heterogeneous distribution formed in the gas phase (Diameter = 300-400 nm)

Agglomerated spheroids (mean diameter=500 nm) surrounded by PyC deposited directly on the substrate

Isotropic PyC fraction

Anisotropic PyC fraction

PyC/SiC INTERFACES

Raman mapping on polished cross-sections

Rough SiC/I-PyC interface Strong interface

Re-appropriation of analytical know-how developed in the 1970's

Methods	Specimen preparation		Informations on		
			SiC		РуС
Fractography	Fracture surfaces		Presence of		Morphology
5 1 9			flaws		
			Fracture mode		
			(transgranular		
			or intergranular)		
Etching + SEM	On caps or		Grains size		Texture
C	polished cross-sections		Morphology		Fraction of
			Stacking faults		anisotropic
					dense PyC
TEM	Thin slices thinned		Grains size and		HR-TEM
	mechanically and by ion		morphology		structure
	sputtering		Nature of		Texture
			crystallographic		lsotropy
			defects		treshold
			Quality of grain		
			boundaries		
XRD	Powders		Presence of		Structure
			hexagonal		(d ₀₀₂ ; L _c)
			polytype		
DAR	Polished cross-sections		_		Isotropy

New analytical procedures for qualifying the microstructure

of fuel particles

AREVA

Methods	Specimen		Informations on				
	preparation		SiC		РуС		
TEM observations	Thin slices thinned by		Grains size and		HR-TEM		
Imaging + diffraction	Focus Ion		morphology		structure		
	Beam (FIB)		Nature of		Texture		
	/		crystallographic		Isotropy		
		_	defects		treshold		
			Quality of grain				
	Deliched areas	_	Doundaries	_	Cravatallina		
Raman	Polished closs-		Presence of		organisation		
microspectroscopy	Sections		nexayonai		(prosonce of		
+ mapping			Presence of		(presence or defects)		
5			excess Si and		Chemical		
			C	-	composition		
			U C		near interface		
					with the SiC		
FBSD	Polished cross-		Grains size and		_		
	sections		morphology				
			Texture				
EPMA	Polished cross-		Stoichiometry		_		
	sections		Si/C				
XPS-ToF-SIMS	Without		Chemical		_		
			composition of				
			the SiC extreme				

AREVA

 Re-appropriation of analytical know-how developed in the 1970's

- New analytical procedures for qualifying the microstructure of fuel particles
- Next challenge :
 correlation growth mechanisms / microstructure