Optimization of UO₂ Fueled PWR Core Design

E. Greenspan et al.

University of California, Berkeley, CA 94720, gehud@nuc.berkeley.edu

> ARWIF-2005 Oak Ridge, TN February 16-18, 2005

NERI Project participants

E. Greenspan (PI), F. Ganda, Z. Shayer, D. Olander University of California, Berkeley, CA 94720,

gehud@nuc.berkeley.edu

N. Todreas (co-PI), J. Malen, C. Shuffler, J. Trant

Massachusetts Institute of Technology, Cambridge, MA 02139, todreas@mit.edu

B. Petrovic (co-PI) and H. Garkisch

Westinghouse Electric Company, Pittsburgh, PA 15235, petrovb@westinghouse.com

Presentation Outline

- Objective
- Approach
- Reference PWR and assumptions
- Neutronics
- Thermal hydraulics
- Clad mechanical integrity
- Vibration and wear
- Economics
- Conclusions

NERI 02-189 Project Objectives

- Assess the feasibility of improving the performance of PWR and BWR by using hydride fuel instead of oxide fuel:
 - *Economics*
 - Higher power per given volume core
 - Higher HM loading (with Th hydride) -> more energy per batch and longer cycles
 - Safety
 - Additional prompt negative reactivity insertion mechanism
 - Additional delayed negative reactivity insertion mechanism
 - Not so negative void coefficient for BWR
 - More uniform BWR assembly composition and pinwise power

Project Objectives (2)

- Assess the feasibility of improving the environmental friendliness of PWR and BWR by using hydride fuel instead of oxide fuel:
 - Higher discharge burnups
 - Pu disposition using fertile-free fuel
 - Pu (MA) multi-recycling in LWR
 - Use of Th as fertile fuel

Observation

Maximum permissible power density using hydride fuel far exceeds that contemporary oxide fueled PWR cores are designed to operate at

- Optimal lattice geometry:
 - fuel rod outer diameter D
 - Pitch-to-diameter ratio P/D

is highly different from the geometry range in present use by industry

Present Study Objective

Optimize the design of UO₂ fueled PWR core using same methodology we adopted for the search of optimal hydride fueled PWR cores

Study Approach

Search for that core design that gives the minimum Cost of Electricity (COE) in a retrofitted PWR

Need:

Attainable power
 Thermal hydraulic analysis
 Transient analysis
 Vibration analysis
 Attainable discharge burnup
 Neutronic analysis
 Clad mechanical integrity analysis

Study Approach (2)

Design variables:

- Outer fuel diameter D
- Pitch-to-diameter ratio P/D (square lattice)
- Uranium enrichment 5%, 7.5%, 10%
- Coolant pressure drop across core 29 psia or 60 psia
- Type of fuel rod support grid spacers or wire wraps
- Design constraints:
 - K_∞ > 1.05
 - Negative Doppler, moderator temperature and void ρ coef.
 - MDNBR
 - Peak fuel temperature
 - Coolant inlet and outlet temperatures fixed
 - Coolant pressure drop fixed

Study Approach (3)

Design constraints (cont.)

- Clad internal pressure
- Clad strain
- Clad water-side corrosion
- Constraints imposed by 5 vibration and wear mechanisms:
 - Vortex induced vibration
 - Fluid elastic instability
 - Turbulence induced vibration in cross and axial flow
 - Fretting wear
 - Sliding (or adhesive) wear

Reference PWR and Assumptions

South Texas Project Electric Generating Station

Parameter	Value	Parameter	Value
Effective core radius	~1.83 m (72")	Inlet temperature	294 C
Active fuel length	4.26 m (168")	Core enthalpy rise	204 kJ/kg
Fission gas plenum length	17.8 cm (7")	System pressure	2250 psia
Clad outer diameter, D	9.5 mm	Radial peaking factor	1.65
Square lattice pitch, P	12.6 mm	Axial peaking factor	1.55
Pitch-to-diameter ratio	1.326	Average linear heat rate	174 W/cm
Number fuel rods per core	50956	Average specific power	38.38 W/gU
$Power \ level^*$	3800 MWt	Average discharge burnup	60 GWD/tHM

Parameters in Italics are variables of this study. The other parameters are fixed

Outer diameter (mm)	Clad thickness (mm)	Gap thickness (mm)
D < 7.747	0.508	0.0635
D > 7.747	0.508 + (D - 7.747) * 0.0362	0.0635 + (D - 7.747) * 0.0108

Neutronics - methodology

Unit cell analysis using SAS2H sequence of SCALE4.4
 Good agreement with OECD/NEA MOX benchmarks

- Assuming 3 batches
 - Same power density
 - Core $k_{\infty}(\alpha)$ is arithmetic average of batch $k_{\infty}(\alpha)$

• Accounting for non-linearity of k_{∞} with BU

• k_{∞} (EOC) = 1.05

- Finding boron concentration in water required to bring k_∞ to 1.05 at any point in time
- Calculating Doppler, MTC and reactivity effect due to 5% voiding – as a function of BU
- Amount of IFBA 0.2D(cm)/0.95 mg/cm ¹⁰B

Neutronics – illustration

MTC

Doppler

Neutronics – results; 5% enriched U

Discharge BU (GWD/tHM)

MTC (pcm/k)

Thermal hydraulics - methodology

- Using VIPRE-EPRI subchannel analysis
- Verified against VIPRE full-core analysis
- MATLAB scripts to automate VIPRE execution
- W3-L correlation for MDNBR

Constraint	Value
MDNBR	2.17
Peak/average fuel temperature (°C)	1400/2800
Present/future Core pressure drop (Psia)	29/60

Constraints:

Thermal hydraulics - results

29 psia

60 psia

Clad integrity - methodology

Using FRAPCON

Constraints:

- Clad corrosion, water side: < 0.1 mm, independent of D
- Clad strain: < 1% in tension</p>
 - External coolant pressure
 - Thermal expansion (fuel and clad)
 - Fuel swelling
- Clad internal pressure: < 2500 psia</p>
 - Gaseous fission products
 - □ Helium from ¹⁰B of IFBA

Clad integrity - results

29 psia

Fuel rod vibration - methodology

- Vibration mechanisms:
 - Fluid elastic instability
 - Vortex shedding lock-in
 - Turbulence induced vibration in cross and axial flow
- Cladding wear mechanisms:
 - Sliding wear
 - Fretting wear

Fuel rod vibration – results: attainable power

29 psia

Fuel rod vibration – results: cycle length

29 psia

Accidents and transient analysis (limited) – methodology & results

- Using VIPRE-EPRI subchannel analysis
- MATLAB scripts to automate VIPRE execution
- Considering:
 - An overpower transient due to control rod bank withdrawal at full power – DNB should not occur
 - A large break LOCA peak clad temperature < 2200°F</p>
 - A complete LOFA DNB should not occur

• Findings:

Pressure drop	Peak power MW _{th}	D (mm)	P/D
29 psia	4104 (vs. 4245)	7.1	1.47
60 psia	4990 (vs. 5045)	6.5	1.39

Economics - methodology

- *"Major backfit" scenario; replacement of:*
 - Steam generators
 - High pressure turbine
 - Pressure vessel head and core internals
- OECD/NEA cost data and costing methodology
- Fuel assembly fabrication cost:
 - 50% of reference proportional to U loading
 - 50% of reference proportional to # of fuel rods per assembly
- Outage time of reference plant is 20 days:
 - 13 days for refueling fixed
 - 7 days for maintenance scales with cycle length (same per year)

Economics – costing assumptions

Cost Component	Unit Price
Mining/Ore	\$41/kg _{HM}
Conversion	$8/kg_{HM}$
Enrichment	$108/kg_{SWU}$
Fabrication	\$275/kg _{HM}
Spent Fuel Storage	\$250/kg _{HM}
Waste Disposal	1 mill/kWh

Transaction Time	Value
Fuel Fabrication	1 yr
Uranium Enrichment	1.5 yr
Uranium Conversion	1.5 yr
Uranium Ore Purchase	2 yr
Spent Fuel Storage	- T _C *

* T_c is the cycle length. A negative sign implies that the storage costs need to be referred back in time to the reference date

Mass Loss Fraction	Value
Mining/Ore	0
Conversion	0.005
Enrichment	Varies
Fabrication	0.01

O&M function			
Variable	Cost		
Refueling Outage	\$800,000/day		
Forced Outage	\$100,000/day		
Replacement	30 mills/kWh		
Fixed			
Personnel	\$150,000/person-yr		
Number Personnel	600		
Refueling Outage	20 days/cycle		
Forced Outage	1%		
Availability	99%		

Economics – costing assumptions

Characteristic	Value		Price	Scaling
Thermal Efficiency	0.33	Component	(\$10 ⁶)	Factor
Number of Batches	3	Steam Generators	100	0.6
Plant Life Extension	20 vrs	Vessel Head	25	-
		Core Internals	25	-
		Turbine Generator	338	0.8
		Existing Fuel Value	67	-

60 psia

29 psia

Lowest COE designs

		<u>Reference</u>	<u>29 psia</u>	<u>60 psia</u>
COE (mills/k	N-hre)	19.7	18.0	17.9
Power (MWth	n)	3800	3800	4929
Geometry:	D (mm)	9.5	7.13	6.5
	P/D	1.326	1.47	1.39
Rod Number		50,956	73,966	98,699
U Inventory	(kg_HM)	99,010	81,581	87,104
Specific Powe	er (kWth/kg_HM)	38.4	46.6	56.6
Linear Heat F	Rate (kW/ft)	5.30	3.67	3.56
Cycle Length (yrs)		1.5	1.17	0.9
Burnup (MWd/kg_HM)		60	56.55	52.3
MDNBR		2.17	2.17	2.65
Peak Fuel Tel	mp (F)		1906	1879

Conclusions

Pressure drop	Reduction in COE	Increase in power density	Optimal /reference D (cm)	Optimal/ reference P/D
29 psia	12%	0%	0.71/0.95	1.47/1.326
60 psia	12.5%	30%	0.65/0.95	1.39/1.326

Our preliminary analysis indicates:

- It may be possible to reduce COE by ~12% by going to thinner fuel rods of a larger P/D ratio
- It may be possible to increase core power density by ~ 30% by going to smaller D, larger P/D and ~60 psia coolant pressure drop

Conclusions (2)

It may be possible to design new PWR for nearly 2 GWe per unit using the same pressure vessel dimensions to be used for the 1500 MWe PWR

Question:

Why industry is not using lower D, higher P/D, higher ∆P core designs???

An alternative promising design approach – wire wrap in hex lattice

An alternative promising design approach – wire wrap in hex lattice

Preliminary results:

Using hexagonal lattice with wire wraps instead of grid spacers, it may be possible to significantly increase core power density without increasing pressure drop above 29 psia. For example:

With D=0.65 cm and P/D = 1.42
Power density can be increased by ~30%