Core Physics Characteristics and Issues for the Advanced High-Temperature Reactor (AHTR)

D.T. Ingersoll, E. J. Parma, C.W. Forsberg, J.P. Renier

ARWIF 2005 Advanced Reactors With Innovative Fuels (and Coolants)

February 16-18, 2005

AHTR **#** MSR

(Solid fuel; salt coolant)

(Fuel dissolved in salt)

AHTR Fills the High-Temperature, High-Power Need

NATIONAL LABORATORY

2400 MW(t) AHTR Nuclear Island Has Similar Size To 1000 MW(t) GE S-PRISM

- Similar vessel size (9 m dia)
 - Space for 2400 MW(t)
 AHTR core with low
 power density
- Similar equipment size due to larger volumetric heat capacity of liquid salt
- Higher capacity decay heat removal system due to higher vessel temperature
- Higher electrical output
 S-PRISM: 380 MW(e)
 - AHTR: 1200 MW(e)

The AHTR Uses Coated-Particle Graphite-Matrix Fuel Elements

FUEL COMPACT

FUEL ASSEMBLIES

- Same fuel as used in gas-cooled hightemperature reactors
- Peak operating limit: 1250°C
- Failure temperature: 1600°C
- Graphite blocks provide neutron moderation and heat transfer to coolant

Models of Conceptual AHTR Design

AHTR 9.0m Vessel Allows 2400 MW(t) Core

OAK RIDGE NATIONAL LABORATORY 102 GT-MHR fuel columns 222 Additional fuel columns 324 Total fuel columns

Power density = 8.3 MW/m³

AHTR Fuel Block (standard GT-MHR block)

AHTR And GT-MHR Have Similar Neutronics

- Excess reactivity similar for given core loading
- Neutron lifetime ~1ms
- k_{eff} increases with higher moderator to fuel ratio (undermoderated in design region)
- Large negative temperature feedback due to Doppler effects (~ -\$0.01/K)
- Similar fuel burnup/ fuel cycle behavior

AHTR Burnup Predictions for Different Fuel Enrichments (3 Zone Core)

10% Enrichment (shuffle time ~240 d)

20% Enrichment (shuffle time ~540 d)

Key Difference: AHTR Void Coefficient

Depends on Salt Composition and Core Configuration

10% enriched U

Coolant Fraction = 10%Fuel Fraction = 50%

Coolant Channel Radius = 0.4 cm Fuel Radius = 1.265 cm Pitch = 3.407 cm

Fuel Particle Packing Fraction = 0.3

Void Coefficient vs. Salt Choice

SNL Model With No Burnable Poisons; Pure ⁷Li in Salt

Salt	Total Void Reactivity Effect (\$)
BeF ₂	-1.46
LiF/BeF ₂ (66/34)	-0.47
MgF ₂ /BeF ₂ (50/50)	-0.49
LiF (Li-7)	+0.16
ZrF ₄ /BeF ₂ (50/50)	+0.43
ZrF₄/LiF (52/48)	+1.25
NaF/BeF ₂ (57/43)	+1.82
ZrF ₄	+1.41
NaF/ZrF ₄ (25/75)	+1.88
NaF/ZrF_{4} (50/50)	+2.64
NaF/ZrF ₄ (75/25)	+3.82
NaF	+7.05

- Example for 10% coolant fraction, 50% fuel fraction and complete core voiding
- Moderation benefit dominates for lower-Z elements in salt
- Absorption dominates for higher-Z elements in salt

Ranking (best to worst) Be, Li-7, Mg, Zr, Na

Impact of Burnable Poisons and ⁷Li Purity on Void Coefficient – ORNL Model

- 2LiF-BeF₂ Salt
- 1 mol% VF₃ Buffer
- 102-column core (600MW)
- 14 BR rods per assembly
- 14 wt% ²³⁵U enrichment

Variation of Void Coefficient With Fuel Fraction and Enrichment

AHTR Transient Behavior With Competing Feedback Effects

Example: Na-Zr Salt (worst salt) with 20% Flow Blockage: +\$0.40 Instantaneous Reactivity Insertion

- Core power increases but is mitigated by increase in fuel temp of ~60°C
- Slow transient (10's of seconds)
- Core reaches lower equilibrium power
- Concern is heat-up of blocked fuel columns (~9 °C/s)

Conclusions on Void Coefficient

- Decreases with increasing uranium loading and increasing burnable poison loading
- Depends on the neutron spectrum decreases with increasing U/C ratio
- Is very sensitive to ⁷Li isotopic purity in 2LiF-BeF₂ salt
- Increases with increasing coolant hole diameter
- Relatively insensitive to fuel burnup
- Options for reducing:
 - higher fuel loading (volume fraction or enrichment)
 - higher burnable absorber loading
 - poisoning the graphite blocks
 - Different fuel/coolant geometry
- Need substantial neutronics analysis to evaluate options

Lithium Purity Considerations

- Large inventory of 99.99% ⁷Li is available
- Enriching to 99.999% ⁷Li (0.001% ⁶Li) will be very expensive
- ⁶Li level will eventually reach equilibrium at 0.001%
 - Burnout of initial ⁶Li "contamination"
 - Production of ⁶Li primarily from Be(n, α) reaction
 - Will take a few years to reach equilibrium
- Need to develop acceptable design with 4-9s ⁷Li (maybe 0.99995)

Heterogeneous Fuel Designs May Help Ensure A Negative Void Coefficients

Future Physics Investigations

- Control rods (number and location)
- Reserve shutdown mechanism
- Power density
- Power peaking
- Decay heat
- Modeling the fuel double heterogeneity
- Validation of methods

Now in progress

