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Overview

• The Scale system has been used to analyze the design of Pu burning  
VHTR’s.

• Multigroup Transport Calculations make necessary the calculations of 
the Dancoff factors associated with the small fuel kernels. This was 
done with the code MCNP

• A full assembly was selected for the parametric analysis toward the 
definition of a system that maximizes the Plutonium burning and 
minimizes the burnup reactivity swing

• Comparisons with MCNP calculations are shown at beginning of life; 
they show reasonable agreements which give confidence in the 
procedures used to compute the Dancoff factors.

• It is also shown that shielding effects due to the huge 240Pu resonance 
at 1.057 eV are of paramount importance.

2



CALCULATIONS OF THE DANCOFF FACTORS 
FOR VHTR’s

• Double heterogeneity effects:

– 1) Small fuel kernels of oxide fuel (radius ~ 100 microns) are 
dispersed in a graphite matrix (the compact)

– 2) The compact is arranged in fuel cells either spherical (3D), the 
case of pebble bed reactors, or cylindrical, the case of prismatic 
fuels (2D)

• Resonant neutrons leaving one kernel can have an 
interaction not only inside the cluster where the kernel is 
located but also in clusters that belong to other pebbles 
or fuel rods.

• Therefore the Dancoff factors for the kernels are space 
dependent
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Dancoff Factors for Pebbles

• Case: 3 cm outside radius, 2.5 cm fuel compact radius 
• The random distributions of the fuel kernels and the pebbles were 

substituted with deterministic arrays, simple or body centered cubic 
lattices that preserve the average number of kernels per unit volume 
and hexagonal compact for the pebbles.

• Note that a recent work by Brown (LANL) and Martin, 2004, makes 
reference to a version of the MCNP code with stochastic geometry
capabilities. 

• The use white boundary conditions at the boundary of the pebble 
and its associated void means that the interactions between pebbles 
are substituted with a boundary condition >>> check this simplifying 
approximation

• For Example:
For each resonant neutron leaving the central kernel 0.2835 have
1st collision with other kernels of the same pebble  and  0.1635
leave the pebble without interactions
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Effects of the Boundary Conditions at the Pebble 
Surface in the Calculations of Dancoff Factorsa

Case Dancoff Boundary 
Conditions Comment

1 0.3731 exact Infinite cubic lattice

2 0.3138 white Only one pebble

3 0.3394 exact Infinite Reactor

a500 microns diameter kernels in graphite, 125 kernels/cc, and simple cubic lattice.
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Dancoff Factors for  Prismatic Fuel

Case: 
1)  Radii for holes, 0.635 cm 

for the fuel compact and 
0.684 cm for the coolant 

2) Hexagonal lattice of 
side 2.64 cm (one 
coolant hole per  two 
fuel holes) 

3) The flat to flat distance 
of the assembly is 33.05 
cm. 
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Dancoff Factors for a Central Fuel Kernel Located in a 
Central Compact in a Prismatic Assembly

Case Radius Kernel 
Microns

Density 
Kernels/cc

Simple Cubic 
Lattice

Body Centered 
Cubic Lattice

1 100 413.357 0.1560 0.1599

2 150 122.472 0.1099 0.1045

3 200 51.670 0.0939 0.0793

4 250 26.455 0.0555 0.0597
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Influence of the Media around a Central Compact on 
the Dancoff Factors (DF) for a Central Fuel Kernel

Case Number of 
Rods Around

DF for 100 
micron 
kernels

Escape
DF for 250 

micron 
kernels

Escape

1 0, isolated 0.0738 0.633 0.0230 0.677

2 3:  1st

neighbors 0.0995 0.396 0.0335 0.391

3

12:  3(1st

neighbors)

9(2nd

neighbors)

0.1295 0.165 0.0455 0.194

4 All Assembly 0.1599 0 0.0597 0
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Parametric Analysis of VHTR’s with Pu Fuel

System variables:
• keff at beginning of life (BOL)
• Fuel enrichment as function of burnup 
• Pu burning as function of burnup as function of two design 

parameters: 

– Fuel kernel radius and

– Moderation ratio (nC/nPu) 

For
• Oxide Pu-Np fuel with isotopics typical of discharged LWR 

fuel elements.
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Composition of the Oxide Pu-Np Fuel Kernel

Isotope at %

Pu-238 1.58

Pu-239 60.10

Pu-240 24.27

Pu-241 8.77

Pu-242 5.28

Sum 100

Fissile Content 
(of HM mix)

65.29

Np/Pu Composition

Actinide at % g/cc kernel

Np 5.20 8.82

Pu 94.80 0.48

Sum 100 9.30

Plutonium Isotopics

Atom Density = 0.06312 a/b-cm

Mass Density = 10.36 g/cc of kernel

O/HM Atom Ratio = 1.7
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Sensitivities to the Fuel Kernel Radius
Case:  Constant Fuel Loading n(C)/n (Pu) ~ 4,000.

Keff (MCNP) at BOL of the Prismatic Assembly 

Case Fuel Kernel 
Radius (microns)

Kernels/cc 
compact K

1 50 3306.855 1.288(2)

2 100 413.357 1.368(1)

3 150 122.476 1.410(1)

4 200 51.670 1.430(1)

The monotonic behavior of k’s as function of the increasing radius (or shielding) is defined by the 
resonances of the fertile material, 240Pu, which has a very important one at 1.057 eV. 
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The possibility appears then to reduce the burnup reactivity swing 
by reducing the shielding in the kernels (or their radius), so  240Pu 

is more likely transformed into 241Pu.
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Sensitivity to the Moderation Ratio

n(C)/n (Pu)  ~ 4,000 of previous calculations changed by:

1) Changing the density of the graphite to 0.5 g/cc (for example using graphite foam 
developed at ORNL) 

or

2) By increasing the number of fuel kernels and keeping  the normal graphite 
density. 

System variables calculated as function of the moderation ratio:

– k at BOL and

– Enrichment as function of burnup

– Pu burning as function of burnup
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Moderation: Carbon Atoms per Pu Atom in Cell
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Case Descriptive Name 
“gram Pu/pebble”

Material for 
matrix

Material for 
assembly

Fuel kernel 
radius microns

Kernels/cc 
compact

1 1 Graphite Graphite 100 413.357

2 1 Foam Foam 100 413.357

3 2 Foam Foam 100 826.714

4 8 Graphite Graphite 150 979.809

5 10 Graphite Graphite 150 1224.771
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Analysis of Pu Burning in VHTR’s With the 
SCALE System

• The sequence in our Assembly level Scale calculations is the 
following: 

1) BONAMI.

2) NITAWL,

3) XSDRNPM transport calculation to perform spatial average of cross 
sections at the level of microcell: kernel-layers-matrix,

4)  XSDRNPM transport calculations of the macrocell corresponding to the 
compact, the graphite of the assembly and the coolant void; in this step we 
produce a second spatial average

5) XSDRNPM transport calculations of the homogeneized assembly to 
compute k and the spatial-energy average of the cross sections..

6) COUPLE and ORIGEN-S to calculate number densities of actinides and 
fission products (plus the radioactivity in, and the radiation from, the 
assembly

• 1 step more than available in the SCALE module SAS2 because of the 
2nd periodicity.
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Case of Prismatic Assembly of the Figure with 
Constant Fuel Loading SCALE and MCNP at BOL

Case
Kernel 
radius 

microns

Dancoff
Factor k MCNP k SCALE dk (%)

1 50 0.2900 1.288(2) 1.282 -0.6

2 100 0.1599 1.368(1) 1.357 -1.1

3 150 0.1045 1.410(1) 1.396 -1.4

4 200 0.0783 1.430(1) 1.422 -0.8

5 250 0.0597 1.451(1) 1.426 -2.5
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Burnup Dependent Calculations with the Scale System
Case VHTR Assembly of Figure 1

100 micron kernel DF=0.16

k=k (Burnup)

Calculation 0 20 GWD/TON 40 GWD/TON 60 GWD/TON

Fuel Kernel 1.145 1.116 1.097 1.080

Compact Cell 1.297 1.275 1.257 1.241

Assembly 1.357 1.335 1.318 1.302
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Effects of the 1.057 eV 240Pu Resonance

• 240Pu has a huge resonance at 1.057 eV with peak 
values larger than 100,000 barns

• In comparison its equivalent in Uranium systems 238U 
has a large resonance at 6.67 eV with a peak value 
around 7,000 barns.

• The escape to resonance absorption when neutrons are 
being moderated is mainly defined by the 1.057 eV
resonance.
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Cumulative absorption fraction for  240Pu  
inside a 100 micron fuel kernel (T=300K).
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For the well moderated case, the Figure shows ∆k as large as 29%.  The fits of k as 
function of the radius of the kernels, shown in the Figure, are similar for both 
cases; thus for larger heterogeneities the less moderated case might show similar 
∆k.
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Conclusions

• Full assembly transport calculations were performed with the SCALE system to 
analyze the design of Pu burning VHTR’s.

• A key step in the preparation of multigroup cross sections in SCALE is the 
consideration of the double heterogeneities and the calculation of Dancoff
factors. 

• Because of the low absorption of graphite the Dancoff factors are space 
dependent and their calculation depends on how realistic is the modeling.

• We used the Monte Carlo code MCNP to investigate this issue.
• The huge 240Pu resonance at 1.057(“ the mother of all resonances”) dominates 

the shielding in the fuel kernels with the result that Plutonium fuel kernels 
produce shielding effects 10 times larger than similar Uranium kernels. 

• The size of the kernel influences then the burnup reactivity swing because of its 
influence in the creation of 241Pu. Although temperature coefficients were not 
calculated in this work one can envision that they could show similar 
characteristics.
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