

UNIVERSITY OF CALIFORNIA AT BERKELEY

NUCLEAR ENGINEERING DEPARTMENT

TRANSMUTATION CAPABILITY OF MOLTEN SALT REACTORS FUELED WITH TRU FROM LWR

Massimiliano Fratoni

Ehud Greenspan

ARWIF-2005 Oak-Ridge, TN, Feb. 16-18, 2005

MSR Features

Control Coolant Salt Electrical enerate Reactor Power Purified Salt Turbine 00000 Heat Exchanger Heat Chemical Processing Plant Compresso Freeze Heat Sink Sint Pump tercoole **Emergency Dump Tanks** 10.0450007.00

 $NaF - ZrF_4 - AcF_3$

600 ÷ 700 °C

Once-through

Suggested by Charles Bowman

Fed by TRU from spent fuel from LWR after a burnup of 33 GWD/t_{HM} and 10 years of cooling and after U isotopes extraction

- 1. Assess the feasibility of attaining criticality in a finite core
- 2. Evaluate MSR performance sensitivity to design variables
- 3. Evaluate repository implications
- 4. Compare transmutation efficiency for different TRU burner systems

Previous work **1. Finite Model**

Graphite-to-MS volume ratio (C/MS) = 3

 $D_{channel} = 7 \ cm, \ H = 420 \ cm$

 $k_{eff} = 1.032$ (with axial leakage)

 $H/D_{core} = 0.924, 955 channels$ 5733 MW_{th} (390 W/cm^3) $k_{eff} = 1.00247 (\pm 0.00067)$ MCNP4C

1. Radial Reflector

	Graphite Thickness [cm]	k _{eff}	Radial Leakage Probability
	0	1.00247 (± 0.00067)	2.56 %
	40	1.01916 (± 0.00059)	2.74 %
	60	1.02574 (± 0.00059)	2.85 %
to	80	1.02848 (± 0.00058)	2.78 %
cs)	200	1.03088 (± 0.00059)	2.79 %

(Due statisti *Limit: Maximum fast neutrons fluence* (> 0.01 MeV) *in the graphite 3.10²² neutrons/cm*²

1. Leakage Probability

Graphite double effect:

- reflector
- moderator

1. Axial Reflector

Problem: plenum (27 cm) to collect the salt below and above the core

Graphite beyond plenum is ineffective reflector

Solution: to narrow the channels diameter at the extremities

1. Final Design

Maximum-to-average fast flux in the graphite **1.079**

 $k_{eff} = 1.04047$

The reactivity excess should compensate for:

- 1. neutrons absorption by fission products
- 2. fraction of delayed neutrons released out of core

radius 2.5 cm, length 30 cm

🏲 plenum, height 27 cm

1. Equilibrium Composition

C/MS	2.8	3.0	3.2	3.4
k _{eff}	0.98267	0.98517	0.98910	0.98799

:. Finite core can not be critical with NaF-ZrF₄ even if fission products are extracted immediately

Single cell k_{eff} (updated) = 1.02351 Finite model k_{eff} = 0.98517

- radial leakage (2.53 %)
- increased absorption in nonactinides salt components

Equilibrium composition

1. Fission Products ρ **Effect**

No Extraction

If FP are not removed at all, $\Delta k_{eff} = -0.222$

Not manageable

Fractional absorption by FP

1. Fission Products p Effect

Manageable!

2. Sensitivity Analysis

Design variables:

- 1. C/MS (spectrum)
- 2. Feed Rate

3. Power Density

Performance parameters considered:

- 1. K_{eff} (finite unit cell)
- 2. Graphite lifetime
- 3. Transmutation Efficiency

$$FT = \frac{\sum_{i} N_{i, feed} - \sum_{i} N_{i, equilibrium}}{\sum_{i} N_{i, feed}}$$

2. Eq. Composition Determination

34 actinides reaction: fission, (n,γ) , (n,2n), (n,3n)

Constraints:

Actinide fluorides maximum solubility in the salt 1.56 mol%
maximum fast neutrons fluence (> 0.01 MeV) in the graphite 3.10²² neutrons/cm²

2. Feed Rate Effect

C/MS=3, power density=390 W/cm³

	MS Feed Rate [I/day-GW _{th}]				
Characteristics	0.133	0.267	0.533	1.067	
k _{eff}	1.01869	1.01760	1.02031	1.02351	
Graphite Lifetime [years]	1.371	1.371	1.374	1.379	
MS Residence Time [years]	105	53	26	13	
Transmutation Efficiency	98.6%	97.2%	94.5%	89.6%	

The transmutation efficiency strongly depends on MS feed/extraction rate

2. Spectrum Effect

2. Power Density Effect

C/MS=3, power density=39 W/cm³

Charactoristics	Feed Rate [I/day-GW _{th}]				
	0.133	0.267	0.533	1.067	
К _{еff}	0.95481	0.95443	0.95514	0.96159	
[vs k _{eff} for 390 W/cm ³]	1.01869	1.01760	1.02031	1.02351	
Graphite Lifetime [years]	13.881	13.882	13.887	13.908	
Transmutation Efficiency	98.55%	97.15%	94.37%	89.47%	

$$\sum_{j} \sigma_{j \to i} \frac{\phi}{2} N_{j} + \sum_{j} \lambda_{j \to i} N_{j} - \lambda_{i} N_{i} - \sigma_{i} \frac{\phi}{2} N_{i} + F_{i} - R N_{i} = 0$$

$$\xrightarrow{238} Np \xrightarrow{238} Pu \xrightarrow{244} Am \xrightarrow{244} Cm$$

Actinido	Cross Section [barns]			
Actinide	Capture	Fission		
²³⁸ Np	11	105		
²³⁸ Pu	21	2		
²⁴⁴ Am	36	150		
²⁴⁴ Cm	18	0.6		

3. Waste

Radio-toxicity defines radiation related hazard

Decay Heat

defines the concentration limit of actinides in the repository

²³⁷Np and precursors long term radiation hazard due to leakage out of repository

Fissile Pu Proliferation hazard Methodology: Exponential Matrix to follow decay

$$\frac{dN_{i}(t)}{dt} = \sum_{j} \lambda_{j \to i} N_{j}(t) - \lambda_{i} N_{i}(t)$$
$$\frac{d\vec{N}(t)}{dt} = A\vec{N}(t)$$
$$\vec{N}(t) = \vec{N}_{t=0} e^{At}$$

3. Radio-toxicity

 $TI = \sum_{i} \frac{\lambda_{i} N_{i}}{C_{i}}$

Ingestion Toxicity Index

the volume of water with which the mixture of radio nuclides must be diluted so that drinking the water will result in accumulation of radiation dose at a rate no greater than 0.5 rem/year

3. Radio-toxicity

time [years]

100% C/MS 0 others 90% 248Cm 246Cm 80% Fractional 245Cm 70% 244Cm 242Cm Contribution to 60% 243Am 241Am 50% radio- toxicity 242Pu 40% 241Pu 240Pu 30% 239Pu 20% 238Pu 237Np 10% 234U 0% 0 1 10 100 1000 10000 100000 time [years] C/MS 24 C/MS 3 100% 100% others others 90% 248Cm 90% 248Cm 246Cm 246Cm 80% 80% 245Cm 245Cm 70% 244Cm 70% 244Cm 242Cm 242Cm 60% 60% 243Am 243Am 241 Am 50% 241Am 50% 242Pu 242Pu 40% 40% 241Pu 241Pu 240Pu 240Pu 30% 30% 239Pu 239Pu 20% 20% 238Pu 238Pu 237Np 237Np 10% 10% 234U 234U 0% 0% 0 10 1000 1 100 10000 100000 0 1 10 100 1000 10000 100000

time [years]

3. Decay Heat

3. ²³⁷Np & Pu

²³⁷Np ($T_{1/2}$ 2.144·10⁶ years) and precursors:

$$Cf^{249} \xrightarrow{351y} Cm^{245} \xrightarrow{8500y} Pu^{241} \xrightarrow{14.35y} Am^{241} \xrightarrow{432.2y} Np^{237}$$

	Feed	C/MS = 0	C/MS = 3	C/MS = 24
²³⁷ Np and precursors	1.0	0.105	0.090	0.024
FT ²³⁹ Pu	-	96.64 %	98.21 %	99.65 %
FT ²⁴¹ Pu	-	83.49 %	87.19 %	97.46 %
(²³⁹ Pu + ²⁴¹ Pu)/Pu	64.46 %	35.42 %	28.87 %	7.14 %

Softer spectrum is preferred

4. Systems Comparison

Objective: Compare the transmutation effectiveness dependence on transmuting reactor spectrum

Model: Unit cell continuously fed with TRU from LWR SF and TRU is continuously removed to establish equilibrium concentration

Constraints: - same total fractional transmutation within the same residence time

- fuel dimensions and linear heat rate (power density) as of reference reactor

Systems:

- 1. Liquid Metal Reactor, Pb-Bi cooled (TRU/Zr fuel)
- 2. MSR with epithermal spectrum (TRU fluorides)
- 3. MSR with thermal spectrum (TRU fluorides)
- 4. PWR with hard spectrum (TRU oxide $14w/o + ZrO_2$)
- 5. PWR with soft spectrum (TRU oxide $\frac{6}{0} + \frac{2}{10}$)

4. Reactors Characteristics

Characteristic	LMR	MSR C/MS 3	MSR C/MS 24	PWR TRU 6 w∕o	PWR TRU 14 w/o
k _{eff} (equilibrium)	1.039	1.009	0.670	0.962	1.025
Fast flux [n/cm ² -s]	1.08×10 ¹⁶	2.04 × 10 ¹⁵	1.63×10 ¹⁵	5.59×10 ¹⁴	4.41×10 ¹⁴
Power density [W/cc] *	181.7	97.50	15.60	110.19	110.19
Specific power [W/g]	766	3435	3403	821	329
Total FT*	99.53%	99.53%	99.53%	99.53%	99.53%
Actinides in core at equil. [atoms/cm ³]	5.94×10 ²⁰	2.82×10 ²⁰	2.84×10 ²⁰	1.00×10 ²¹	2.52×10 ²¹

* imposed

4. Spectra

4. Fractional Transmutation

4. Toxicity

4. Toxicity

4. Decay Heat

4. Decay Heat

4. Np Inventory

Actinide	LMR	MSR C/MS 3	MSR C/MS 24	PWR TRU 6 w/o	PWR TRU 13 w/o	Feed
²³⁷ Np [kg]	19.42	21.25	8.96	18.73	18.92	10674
²⁴¹ Pu [kg]	71.00	69.30	9.65	39.34	76.79	8051
²⁴¹ Am [kg]	39.86	14.80	3.05	10.36	26.20	19066
²⁴⁵ Cm [kg]	14.24	32.71	4.05	12.05	18.37	19
²⁴⁹ Cf [kg]	1.35	14.52	35.30	13.38	4.99	0
Total [kg]	145.87	152.58	61.02	93.86	145.27	37810

4. Pu Inventory

4. Neutrons Source

Conclusions: MSR Design

- 1. It is not possible to design a NaF-ZrF₄ MSR fed by LWR SF TRU to be critical, but very close to critical – k_{eff} ~0.97, provided fission products are continuously extracted
- 2. Maximum k_{eff} is obtained when C/MS = 3.2
- 3. Using graphite reflectors it is possible to make the radiation damage to graphite very uniform
- 4. Decreasing the MS feed rate increases the transmutation efficiency without significantly affecting k_{eff} , provided fission products are continuously extracted
- 5. Power density reduction enhances the graphite lifetime but strongly decreasing k_{eff}
- 6. Softer spectrum is better for reducing long term inventory of ²³⁷Np, fissile Pu and Pu(fissile)/Pu ratio
- 7. Hard spectrum is better for reducing initial radio-toxicity and decay heat but after ~100 years of cooling softer spectrum is preferable

Conclusions: Comparison

Characteristic	Preferred System
Neutron economy	LMR, PWR(14), MSR(3)
Specific power	MSR
Radio-toxicity	LMR<10 ² y; MSR(24)<10 ³ y; LWR(14)<10 ⁵ y
Decay-heat	LMR<10 ² y; MSR(24)<10 ³ y; LWR(14)<10 ⁵ y
Neutron source (low)	LMR, PWR(14), MSR(3)
²³⁷ Np & precursors	MSR(24), LWR(6), rest
Fissile Pu	MSR(24), LWR(6), MSR(3)
Fissile/total Pu	MSR(24), LWR(6), MSR(3)
Specific Pu decay heat (low)	MSR(24), LWR(6), LMR
Specific Pu neutron source	MSR(24), MSR(3)<10 y; LMR, MSR(3)>10 y

Issues to be considered:

- Feasibility of criticality using other MS
- Graphite replacement strategy
- TRU losses during recycling of C & FP
- Handling of fission products
- Approach to equilibrium
- Economics
- Technology maturity