

Modelling Incineration of Minor Actinides in the Experimental ADS MYRRHA

E. Malambu, <u>V. Sobolev</u>, W. Haeck, H. Aït Abderrahim

SCK·CEN, Boeretang 200, Mol, Belgium

ARWIF-2005, Oak Ridge, USA

February 16-18, 2005

Contents

- 1. Introduction
- 2. Irradiation conditions
- 3. Fuel targets
- 4. Results of modelling
- 5. Conclusions

1.1. Introduction

- High level radioactive waste (HLW) is the problem of a high importance in countries using nuclear energy. About 10⁵ t of HLW are into intermediate storages. 2000 t are produced every year in USA and 2500 t in EU(15).
- Pu, MA (Np, Am, Cm) and some LLFP give major contribution to the long term radiotoxicity. Spent fuel -> 10 kg/t Pu, 1.4 kg/t MA, 1.2 kg/t LLFP.
- P&T allows to reduce significantly the amount and radiotoxicity of HLW going to geological disposal.
- Subcritical ADS can be an effective and safe solution for transmutation of MA and Pu burning.
- The Belgian nuclear research Centre SCK·CEN in collaboration with other countries is developing an experimental ADS (MYRRHA) for MA and LLFP transmutation studies and demonstration.

1.2. Introduction: ADS in double strata

1.3. Introduction: MYRRHA ADS

1.4. Introduction: MYRRHA ADS core

- 99 + 3 hexagonal cells ("macro-cells")
- Target-block hole is made by 3 removed FA in the central region
- Surrounding active zone composed of 45 (or more) FA
- Outer reflector zone composed of 54 (or less) reflector assemblies

1.5. Introduction: MYRRHA ADS spectrum

1.6. Introduction: MYRRHA ADS flux

2.1. Irradiation conditions: Transmutation core option

2.2. Irradiation conditions : Neutron spectrum in A and D

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

2.3. Irradiation conditions: Flux regime

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

Time, d

3. Fuel targets:

- > Composition:
 - 40 vol.% (Cm_{0.1}Am_{0.5},Pu_{0.4})O_{1.88} + 60 vol.% MgO
- > Density
- > Fuel column diameter x height:
- > Initial fuel isotopic vectors:

2nd strata option.

5.35 x 40.0 mm

PLUTONIUM

Isotope	Content			
	wt.%			
²³⁸ Pu	5.06			
²³⁹ Pu	37.91			
²⁴⁰ Pu	30.31			
²⁴¹ Pu	13.21			
²⁴² Pu	13.51			

AMERICIUM	

Content wt.%

66.67

33.33

Isotope

²⁴¹Am

²⁴³Am

CURIUM

90 % TD

Isotope	Content		
244	Wt.%		
²⁴⁵ Cm	90.00		
² °Cm	10.00		

4.1. Results of modelling:

- ALEPH code system:
 MCNPX + NJOY + ORIGEN + JEF 2.2 (mod SCK)
- Calculated features:
 - Neutron flux distribution
 - Neutron spectrum
 - > Effective cross-sections
 - Fuel isotopic composition evolution
 - Power density evolution

4.2. Results of modeling: Pu, Am and Cm content

Elapsed time (days)

4.3. Results of modeling: Cm, Pu and He generation

$$^{241}Am + n \rightarrow ^{242}Am(90\%) \xrightarrow{(\tau=16h)} \beta^{-} + ^{242}Cm \xrightarrow{(\tau=162d)} \alpha + ^{238}Pu$$

$$\xrightarrow{3} 242m}Am(10\%) \xrightarrow{(\tau=141y)} \gamma^{1}$$

$$^{243}Am + n \rightarrow ^{244}Am \xrightarrow{(\tau=10.1h)} \beta^{-} + ^{244}Cm \xrightarrow{(\tau=18.1y)} \alpha + ^{240}Pu$$

$$^{238}Pu \xrightarrow{(\tau=87.7 y)} \alpha + ^{234}U$$

4.4. Results of modeling: He, Xe and Kr generation

4.5. Results of modeling: Am-isotopes content

4.6. Results of modeling: Am isotopic composition

4.7. Results of modeling: Cm-isotopes content

4.8. Results of modeling: Cm isotopic composition

4.9. Results of modeling: Pu-isotopes content

4.10. Results of modeling: Pu isotopic composition

4.12. Results of modeling: Actinide mass balance

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

Mass in grams										
		m0(BOL)	Δm1=m1(EOI)-m(BOL)		Δm2=m2(EOS)-m1(EOI)		(Δm1+Δm2)/m0(BOL)			
	t _{1/2}	3A+3D	3 A	3 D	3 A	3 D	3 A	3 D		
Pu-238	87.7 y	366	326	333	93	92	229%	232%		
Pu-239	2.4·10⁴ y	2744	-493	-479			-35.9%	-34.9%		
Pu-240	6550 y	2194	-15	-14	66	63	4.7%	4.4%		
Pu-241	14.4 y	956	-179	-174	-27	-29	-43.2%	-42.6%		
Pu-242	3.76·10 ⁵ y	978	79	87			16.1%	17.8%		
Pu		7237	-282	-232	132	120	-4.1%	-3.1%		
Am-241	433 y	6030	-1025	-915	21	22	-33.3%	-29.6%		
Am-242	16 h; 141 y		124	131	-2	-2	(122 g)	(129 g)		
Am-243	7370 y	3014	-419	-359			-27.8%	-23.8%		
Am		9044	-1319	-1143	19	20	-28.8%	-24.8%		
Cm-242	162.8 d		107	104	-102	-99	(5.2 g)	(5.0 g)		
Cm-243	285 y		6.1	5.9			(6.1 g)	(5.9 g)		
Cm-244	18.1 y	1626	103.7	74.3	-68	-60	4.4%	1.8%		
Cm-245	8500 y	180.7	25.9	22.2			28.6%	24.5%		
Cm-246	4730 y		5.8	5.6			(5.8 g)	(5.6 g)		
Cm		1807	249	212	-170	-158	8.7%	5.9%		
All actinides		18088	-1352	-1162	-19	-18	-15.2%	-13.1%		

D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

5. Conclusions (I)

- Studies of possibilities of the MA transmutation in the subcritical ADS MYRRHA are under way at SCK·CEN.
- A code system ALEPH has been developed for the burnup-depletion calculations in the MYRRHA core, and is under validation and testing.
- The evolution of the composition of CERCER IMF with $Cm_{0.1}Am_{0.5}Pu_{0.4}O_{1.88}$ fuel and MgO matrix, placed into two different positions of the fast core for 9 operation cycles (810 EFPD) followed by 2 years storage, have been modelled with ALEPH.

D'ÉTUDE DE L'ÉNERGIE NUCLÉAIR

5. Conclusions (II)

- The net actinide destruction is 2.55 kg over the initial amount of 18.1 kg. The mass decrease of 26.8 % is observed for Am, whereas a mass increase of 7.3 % for Cm.
- He generated in the MA fuels contributes significantly to the rare gas production during operation as well as in storage and can affect significantly fuel properties. The amount of the produced He is ~ 1.5 times higher than Xe+Kr at the end of irradiation and 2.2 times higher after the storage.
- A more detailed analysis aiming at optimisation of the design of the MA fuel targets and of the burning strategy is in progress.