

SENSITIVITY ANALYSIS OF NUCLEAR DATA ON KEFF FOR GRAPHITE MODERATED INNOVATIVE REACTORS

A.BIDAUD, David LECARPENTIER Oliver KÖBERL, Tatiana Ivanova, Victor MASTRANGELO, Ludovic MATHIEU, Daniel HEUER

IPN Orsay EdF R&D Clamart CEA Cadarache CNAM PARIS LPSC/CNRS Grenoble

First Order Perturbation theory application

Evolution of Molten Salt Breeder Reactor concept toward fuel chemistry simplification

2 salts zones (1 fissile and 1 fertile) with different enrichment/moderation ratio : Temperature coef<0 Neutron balance optimized

Densities:

Fuel at equilibrium FP concentrations and enrichment depend on fuel chemistry

Thorium cycle advantages :

- Breeding
- Minimum waste production
- Low fissile inventory

But competitions between: Breeding+Graphite lifetime <->temperature coefficient "Reference' chosen : Radius = 8,5 cm

Integrated sensitivity comparison

Isotope	reaction	Deterministic method(%/%)	stochastic method(%/%)
С	(n,elas)	0,340	0,310
U235	(n,gamma)	-0,020	-0,019
	(n,fission)	0,037	0,044
	Nu total	0,093	0,099
U234	(n,gamma)	-0,138	-0,058
Pa233	(n,gamma)	-0,015	-0,013
U233	(n,gamma)	-0,080	-0,068
	(n,fission)	0,336	0,385
	Nu total	0,875	0,883
Th232	(n,gamma)	-0,379	-0,371

Direct calculation results :

0,1% change of Th density gives 0,26%/%

1% change of Th density gives 0,29%/%

3% change of Th density gives 0,29%/%

Th 232 Capture Sensitivity Profile

available Th232 evaluations : rather old ~1977(ENDFB6)->1985 modif : JEFF3.0 (JENDL3.2) 1993 Available Th232 uncertainties last : one unique source : 1977 ENDF evaluation shared by ENDFB6, IRDF90v2, JEFF3.0 ~10% uncertainty in the resolved resonance energy range, diagonal covariance matrice.

New measurements :n-TOF(CERN), IRMM (Geel, Belgium) 3-5% precision-> new evaluations.

JEFF3.1 available in march 2005

When new uncertainty evaluation can be expected?..

Uncertainty analysis

			Uncertainty	uncertainty
Isotope	reaction	Sensitivity(%/%)	(pcm)	source
С	(n,elas)	3,40E-01	35	JEF2.2
U235	(n,gamma)	-1,98E-02	42	
	fission	3,67E-02	27	JENDL3.2
	Nutotal	9,30E-02	30	
	(n,gamma)	-8,03E-02	27	
U233	fission	3,36E-01	227	JENDL3.3
	Nu	8,75E-01	186	
Th232	(n,gamma)	-3,79E-01	3891	ENDFB6
	fission	2,83E-02	34	IRDF90√2
	Nu	3,20E-02	0	JEFF3.0

Number

1 2

3

Reflector 2

OECD/NEA HTR Benchmark

8

Reflector 3

Cell calculations and core calculations with various fuels at 2 temperatures.

Good agreement between participants (Deterministic and stochastic) But for VSOP solution for Pu core calculations : -4000 pcm. Pu240 capture cross section suspected.

Material	Reaction	Sensitivity(%/%)
	Nu total	8,20E-01
Pu239	(n,fission)	3,55E-01
	(n ,γ)	-2,82E-01
Pu240	(n ,γ)	-4,72E-01
Pu241	Nu total	1,79E-01
	(n,fission)	8,21E-02
	(n ,γ)	-3,56E-02
Pu242	(n ,γ)	-1,87E-02
Carbon	elastic	1,59E-01
	(n ,γ)	-1,32E-02

Reaction	1g XS relative difference	26g Integrated sensitivity (%/%)	Expected impact (pcm)
Pu239	0,28%		
fission			
Pu242	21%		
Capture	21/0		
Pu240	15%		
Capture	10 %		

Reaction	1g XS relative difference	26g Integrated sensitivity (%/%)	Expected impact (pcm)
Pu239	0.28%	0 355	
fission	0,20%	0,399	
Pu242	21%	0 0197	
Capture	-21/0	-0,0187	
Pu240	15%	0 472	
Capture	1570	-0,472	

Reaction	1g XS relative difference	26g Integrated sensitivity (%/%)	Expected impact (pcm)
Pu239	0.28%	0 255	+100
fission	0,20%	0,355	
Pu242	21%	0 0197	+400
Capture	-21/0	-0,0187	
Pu240	15%	0 472	-7000
Capture	15/0	-0,472	

Material	Reaction	Uncertainty(pcm) JENDL/alternative source
	Nu total	65
PU239	(n,fission)	<mark>1280</mark> /90(IRDF90)
	(n,y)	<mark>750</mark>
Pu240	(n,y)	375
Pu241	Nu total	52
	(n,fission)	39
	(n,y)	55
Carbon	elastic	46(ENDFB5)
	(n,y)	79(ENDFB5)
Total		1556/405

- Whatever the concept, most sensitive reactions are:
 - Neutron yelds
 - Fission and capture reaction for fissile material
 - Capture reaction on fertile material
 - Scattering reaction on moderator
- Sensitivity of thermal treatement for carbon in graphite very important but not evaluated.
- Importance of Pu240 capture cross section confirmed for HTR discrepancy.

- Uncertainty due to nuclear data are:
 - >1% for TMSR, Thorium capture is by far the main contributor.
 - About 1% for HTR benchmark. Main contributors are Pu240 capture and Pu239 cross sections and neutron yelds.
- Keff uncertainty is not the real problem : it will be equal to 1! But design margins have to be taken to cope with this uncertainty : U233 density and inventory for TMSR (with side effect on safety coefficients and breeding?) and number of pebble for pebble bed HTR or another parameter able to control reactivity swing.
- These analyses are limited by the amount of nuclear data uncertainty information. Almost no information is available for nuclides with mass>241, or Th232, even though they will be massively loaded in next generation reactors...