

WASTE RADIOTOXICITY MINIMIZATION USING INNOVATIVE LWR-HTR-GCFR SYMBIOTIC FUEL CYCLES

N. Cerullo^{1,2}, G. Lomonaco³, V. Romanello²

¹DIPTEM - University of Genova ²DIMNP - University of Pisa ³Department of Energetics - University of Pisa

Worldwide Nuclear Waste Production

- More than 400 nuclear reactors producing over 16% of the world's electricity
- A Light Water Reactor with an output of 1000 MWe and an efficiency of 33% discharges annually 25 tons of nuclear waste
- In the fission process over 300 new species are formed (over 200 are radioactive and could pose an hazard)

Waste Burning Importance

- Safe and economic permanent disposal of radioactive waste is assuming more and more importance
- Plutonium available (2000):
 - · 500 t from reprocessing
 - 200 t from the dismantlement of nuclear weapons (START treaties)
 - · 60-80 t/year from operating LWRs worldwide

Average Waste Composition

- After 3 years of permanence in the reactor core the fuel is transferred to cooling pools
- Its composition is:
 - 94% U238
 - 1% U235
 - 1% Pu
 - 0.1% MA (Np, Am, Cm)
 - 3-4% FP

Main elements present in Nuclear Waste

1 H 3 Li 11 No	4 Be 12 Mg	Be fission products I long-lived radionuclides					activation products fission and activation products				5 B 13 Al	6 () 14 Si	7 N 15 P	8 0 16 S	9 F 17 Cl	2 He 10 Ne 18 Ar	
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	²⁶ Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 (Zr)	41 Nb	42 Mo	43 (Tc)	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 (Sn)	SI Sb	52 Te	53 ()	54 Xe
55 (C5)	56 Ba	Ln	72 Hf	73 Ta	74 W	75 Re	76 Os	77 r	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	An	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	Uun								
lantha	anides	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 (Sm)	63 Eu	64 Gd	⁶⁵ ТЪ	66 Dy	67 Ho	68 Er	69 Tm	⁷⁰ ҮЬ	71 Lu	
actir	nides	89 Ac	90 Th	91 Po	G	NP NP	PU	95 (Am)	Store Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	

Vincenzo Romanello

Actinides Chains

Vincenzo Romanello

Symbiotic Fuel Cycles

- By using a combination of LWR, HTR and GCFR:
 - The utilization of U resource could be enhanced
 - The waste radiotoxicity can be reduced by recycling of both Pu and the MA through symbiotic fuel cycles

Vincenzo Romanello

HTR - Pebble Bed

Coated Particle

747,000 MW-days/ton

Vincenzo Romanello

Calculations Tools

- MONTEBURNS neutronic code
- CARL2 code (Bateman's equations based code)

$$dN_{1} = -\lambda_{1}N_{1}dt$$

$$dN_{2} = \lambda_{1}N_{1}dt - \lambda_{2}N_{2}dt$$

$$dN_{3} = \lambda_{2}N_{2}dt - \lambda_{3}N_{3}dt$$

$$dN_{4} = \lambda_{3}N_{3}dt - \lambda_{4}N_{4}dt$$
...

$$A_{n} = N_{0} \cdot \sum_{i=1}^{n} c_{i} e^{-\lambda_{i} t} dt = N_{0} \cdot (c_{1} e^{-\lambda_{1} t} + c_{2} e^{-\lambda_{2} t} + \dots + c_{n} e^{-\lambda_{n} t})$$

$$c_{m} = \frac{\prod_{i=1}^{n} \lambda_{i}}{\prod_{i=1, i \neq m}^{n} (\lambda_{i} - \lambda_{m})} = \frac{\lambda_{1} \cdot \lambda_{2} \cdot \lambda_{3} \cdots \lambda_{n}}{(\lambda_{1} - \lambda_{m}) \cdot (\lambda_{2} - \lambda_{m}) \cdots (\lambda_{n} - \lambda_{m})}$$

Vincenzo Romanello

MCNP Input Model

Fuel elements for GCFR

Reference Levels Evaluation

- In order to evaluate LOMBT (*Level Of Mine Balancing Time*) we need to state a reference level
- Now, the reference level for radiotoxicity of the natural U in mines (LOM) could be considered 20 Sv/Kg_{Unat}
- Great differences of U ore concentration in nature (e.g.: Cigar Lake, Canada: average 14%, but it is found as high as 55% in some places!)
- It is necessary to calculate a specific LOM referring to each different fuel composition

LWR Spent Fuel Radiotoxicity

HTR loaded with Th-Pu

- We initially explored symbiotic fuel cycles coupling current LWRs with HTRs, in order to optimize Pu/Th ratios in the fuel
- So we analyzed First generation Pu (Pu^{Fg}):
 - Th+Pu^{Fg} based fuel (ratio 3/1)
 - Th+Pu^{Fg} based fuel (ratio 2/1)
 - Th+Pu^{Fg} based fuel (ratio 1/1)

HTR loaded with Th-Pu(3/1)

Vincenzo Romanello

HTR loaded with Th-Pu(2/1)

Vincenzo Romanello

HTR loaded with Th-Pu(1/1)

Vincenzo Romanello

Actinides in HTR (Th/Pu 1/1)

GCFR loaded with U-Pu-MA

- Starting from the results on HTR, to close the cycle, we used GCFRs to burn MA (which are important contributors to long term waste radiotoxic inventory)
- So we analyzed:
 - Pu^{Sg} + MA + Pu deriving from HTR loaded with Pu^{Sg} in a U²³⁸ matrix (ratio Pu/MA/U238 10/1/40)
 - Pu^{Sg} + MA + Pu deriving from HTR loaded with Pu^{Sg} in a U²³⁸ matrix (ratio Pu/MA/U238 10/1/40)
 - Pu^{Fg} + MA + Pu deriving from HTR loaded with Pu^{Fg} in a U²³⁸ matrix – increased moderation (ratio Pu/MA/U238 10/1/40)

GCFR loaded with Pu^{Sg}+U+MA(10/40/1)

Vincenzo Romanello

GCFR [Pu^{Sg}+U+MA(10/40/1) CP_{mod}]

Vincenzo Romanello

GCFR loaded with Pu^{Fg}+U+MA(10/40/1)

Vincenzo Romanello

MA in GCFR (Pu^{Fg})

Vincenzo Romanello

Summary of Obtained Results

Case	Reactor	Fuel	LOMBT [y]	Energy g _{Pu}	Pu _{out} Pu _{in}	TRU _{out} TRU _{in}	$\frac{\text{Act}_{\text{out}}}{\text{Act}_{\text{in}}}$	
a	HTR	Pu ^{Fg} /Th (1/1)	37982	60.16 GJ	24.14%	31.75%	63.88%	
b	HTR	Pu ^{Fg} /Th (1/2)	37547	59.40 GJ	27.75%	33.88%	76.25%	
С	HTR	Pu ^{Fg} /Th (1/3)	37117	58.89 GJ	29.06%	34.37%	81.94%	
d	GCFR	Pu ^{Fg} /MA/U ²³⁸ (10/1/40)	9204	154.44 GJ	85.66%	86.77%	57.78%	
e	GCFR	Pu ^{Sg} /MA/U ²³⁸ (10/1/40)	9310	155.26 GJ	85.85%	87.77%	57.57%	
f	GCFR ^{mod}	Pu ^{Sg} /MA/U ²³⁸ (10/1/40)	11860	105.57 GJ	98.02%	98.95%	70.64%	

Vincenzo Romanello

Conclusions [1/2]

- Using HTRs, we can burn Pu and reduce significantly the radiotoxic inventory *producing and not consuming energy*
- The LOMBTs depend on the compositions of both the spent and the fresh fuel
- If we use ultra high burnup, the long term radiotoxicity arises mainly from the presence of Cm²⁴⁴ in the spent fuel (a single nuclide and not a mix)

Conclusions [2/2]

- An accurate choice of LWR HTR GCFR integrated fuel cycles could be an important step on the way to solving the spent fuel problem
- Even if we have performed a lot of calculations, the research is still in a preliminary stage
- Therefore it is very important to continue these researches in order to solve these still open questions for a wider use of nuclear energy