OECD/NEA Source Convergence Benchmark 1: Checkerboard storage of assemblies

Authors

N. Smith et al. (AEA-Technology, UK)

Co-ordinator

Dr. Nigel R. SMITH AEA Technology A32 Winfrith DORCHESTER Dorset DT2 8DH ROYAUME-UNI

Tel: +44 (1305) 203 260 Fax: +44 (1305) 202 746 E-mail: nigel.smith@aeat.co.uk

Overview

The model comprises a notional 24x3 LWR fuel storage rack with fuel elements stored in alternate locations. The fuel elements are ~5.0% enriched-by-weight fuel elements located within fully water-flooded steel storage racks surrounded by a close-fitting full concrete reflection on three sides, water on the remaining side and water on the top and bottom. The fuel elements are formed from a 15x15 lattice of Zr-clad UO₂.

Specifications

Material data

The material compositions are as follows (in atoms/barn.cm):

Fuel		Conc	rete		
U238	2.2380E-02		Н	5.5437E-03	
0	4.6054E-02		С	6.9793E-03	
U235	8.2213E-04		SI	7.7106E-03	
			CA	8.9591E-03	
			0	4.3383E-02	
Water		Iron			
Н	6.6706E-02		FE	8.3770E-02	
0	3.3353E-02				
Zirconium					
ZR	4.2910E-02				

Geometry data

The following figure describes the problem geometry. The fuel elements are numbered as in a conventional matrix, so that the lowest left-hand fuel element in the figure below is in position (1,1) and the top right-hand fuel element is in position (23,3).

Required calculations

Calculations should be performed using 500 scored generations Four sets of calculations are required using each of the following starting source distributions:

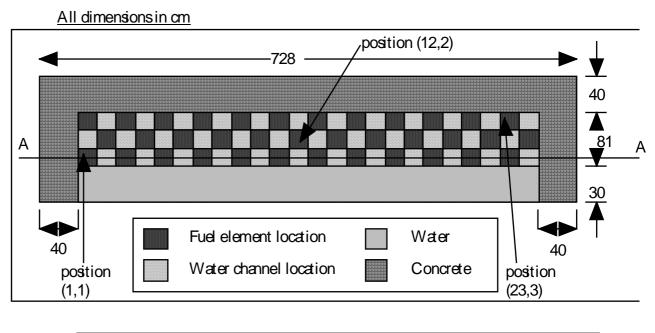
- Uniform over the 36 fuel elements
- All starting source points in location (1,1)
- All starting source points in location (23,3)
- All starting source points in location (12,2)

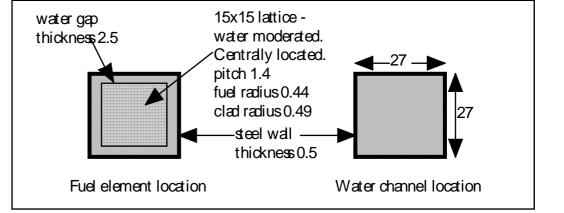
For each starting source distribution, three different numbers of skipped generations should be employed: 20, 40 and 100. In addition, for each source/skipped generations combination, three difference numbers of starting source points per iteration will be used: 1000, 2000, 5000.

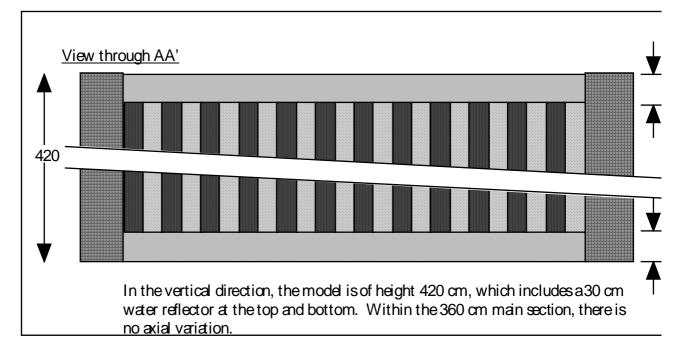
Thirty-six calculations are therefore required as follows:

Case	Starting Source	Skipped	Starting	
		Generations	source points	
1	Uniform	20	1000	
2	Uniform	40	1000	
3	Uniform	100	1000	
4	Location (1,1)	20	1000	
5	Location (1,1)	40	1000	
6	Location (1,1)	100	1000	
7	Location (23,3)	20	1000	
8	Location (23,3)	40	1000	
9	Location (23,3)	100	1000	
10	Location (12,2)	20	1000	
11	Location (12,2)	40	1000	
12	Location (12,2)	100	1000	
13	Uniform	20	2000	
14	Uniform	40	2000	
15	Uniform	100	2000	
16	Location (1,1)	20	2000	
17	Location (1,1)	40	2000	
18	Location (1,1)	100	2000	
19	Location (23,3)	20	2000	
20	Location (23,3)	40	2000	
21	Location (23,3)	100	2000	
22	Location (12,2)	20	2000	
23	Location (12,2)	40	2000	
24	Location (12,2)	100	2000	
25	Uniform	20	5000	
26	Uniform	40	5000	
27	Uniform	100	5000	
28	Location (1,1)	20	5000	
29	Location (1,1)	40	5000	
30	Location (1,1)	100	5000	
31	Location (23,3)	20	5000	
32	Location (23,3)	40	5000	
33	Location (23,3)	100	5000	
34	Location (12,2)	20	5000	
35	Location (12,2)	40	5000	
36	Location (12,2)	100	5000	

Required output


The following information is required. The proposed submission format is intended to make the analysis phase easier. MS Excel spreadsheets may be used to enter the data. However, when a simple text file is used, numerical data separator should be "," without blanks and the word NODATA is to be inserted if a field is empty. (" Line Required information 1: Date 2: Institution Contact Person 3: 4: e-mail address 5: Voice phone number 6: FAX Phone Number 7: Problem name, e.g., "Benchmark 1: Checkerboard storage" 8: Case name, e.q., 1 9: Code name 10: Code type, e.g., Monte Carlo, SN 11: Cross section library source, e.g., JEF-2.2 12: Starting source 13: nskip = number of generations skipped before beginning tallies or before convergence: 14: ngen = number of generations tallied 15: nhist = number of histories per generation 16: ngensh = number of generations per superhistory 17: final k-eff estimate 18: final k-eff estimate uncertainty (one standard deviation) 19: k-eff estimate for first supergeneration 20: individual k-eff estimate for second supergeneration individual k-eff estimate for last supergeneration 18+ngen:


Cumulative fission fractions " ff(i,g)" in fissionable region "i" in generation g, is also an important output. As all computer codes do not have the capability of printing this information for any generation, participants may choose between the following alternatives.


1) Fission fractions are given as average over all generations

2) Fission fractions are given as average over all active generations

3) Fission fractions are given at different generation sequences

