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Abstract

A novel high-resolution Navier-Stokes method is propdeedmodelling large-scale turbulent flows. The method is
based on the non-oscillatory low-dissipative and low-dspe CABARET scheme. Numerical results are provided fo
the classical backward-facing step problem and forebent OECD/NEA-Vattenfall T-junction blind-test esise.

1. Introduction

Unsteady heat transfer problems that are associatedwiiulent non-isothermal flow mixing are very topitad
the thermal fatigue of industrial power plant systemsathdmatical modelling of such problems remains very
challenging because of the poorly understood large-scale tnckupnenomena. One popular approach for modelling
this type of flows is Implicit Large Eddy Simulation (ILESJhe Implicit LES approach doesn’t have any explicit
turbulence model and has to rely on (i) the abilitthef numerical method to remove all scales smallertthagrid scale
from the solution without affecting the resolved scalegrovision that (ii) the method’s resolution is enougledpture
all important dynamic scales. For the latter, the udegtf-resolution robust numerical methods is thus esgeRence,
for the numerical method our choice is the Compact AtelyraBoundary Adjusting High REsolution Technique
(CABARET) scheme that has previously been applied fairspladvection-dominated problems [1-6]. In comparison
with the standard finite-difference and finite-volumetiogls, in CABARET there is always an additional independent
evolutionary variable, which gives the method theiigbib preserve one more important property of the gowgrni
equations - the small phase and amplitude error. FaingdNavier-Stokes equations with Reynolds numbers 4fthe
method gives a very good convergence without any additiamsiopditioning down to Mach numbers as low as
M~0.05-0.1 In particular for the ILES modelling of a hydmdsnic instability and free jet a 25grid using CABARET
is able to produce results comparable to a conventsgwind-order method which would require at least 188
points [6]. Here, the CABARET method is 30 times mdfieient.

The goal of the current paper is to further promote IteS CABARET method for modelling of large-scale
turbulent flows. We first consider the solution of tremthmark problem of turbulent flow over a backward facteg s
[7] and then discuss the CABARAT application for theerds OECD/NEA-Vattenfall T-junction blind test exerci8¢9].

1 Turbulent flow over backwar d facing step: example of the solution for a classical benchmark problem

To first demonstrate the CABARET solver performancélealised framework the flow over backward facing step
[7] is considered. The step height S is the same agahebetween the step and the top wall boundary. The inflow
boundary conditions are laminar, with Reynolds humber=5000Viamth number=0.1. Uniform hexahedral grids have
been used with densities of 10 points and 20 points perghdsight (S) giving a total grid size of 100 000 and 800 000
points, respectively. The CABARET solution was obtdirfeom conducting a fully compressible Navier-Stokes
calculation which technical details, including the patedation strategies, are reported elsewhere, e.fl0inand here
we are just reporting the results. Figure 1 shows nualergsults: the time-averaged axial velocity component an
velocity streamlines for two grid resolutions - (aflaa snapshot of instantaneous vorticity filaments.- (b)
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Fig. 1. Time-averaged velocity fields for two mesh resoh# (a) and vorticity (Q-norm) iso-surfaces for thiel glensity
of 20 cells per step (b).



The instantaneous vorticity field has a rich 3D strietiypical of a high-Re turbulent flow and is in a dmsti
contrast with the 2D laminar shear-layer profile thas been used as the initial condition. We also notéhibdength of
the recirculation zone after the step is in a good aggeewith the reference experiment value range at thymdtds
number, L/S=6.5-7 [7].

2. The CABARET solution of the T-junction problem

2.1 Gover ning equations and boundary conditions

The modelling of thermo-hydraulic turbulent flow in thguhction corresponding to the OECD/NEA-Vattenfall T-
junction blind test conditions [8,9] is discussed next.

The water flow in mixing tees is modelled by the gyst# slightly compressible Navier-Stokes equations:
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where 0, is the constant density, u,v,w are the x-, y- and zteS@n coordinate system velocity componepts the

pressurey is the kinematic viscosity argis the sound speed. We note that, for the sake of ncathefficiency with the
current compressible flow solver, instead of the physiatue for the sound speed in water an effective soundispee

used. The latter corresponds to a small subsonic MacharuMty =+/u® +v*+w?/c=0.1- 0.2, for which the

compressibility effects on the turbulent eddies coregdn the flow should be small. The apostoriori checkge ha
confirmed that the numerical solution remains fairlyemstive to the Mach number variation within this range.

The external boundary conditions correspond to specifyiegfull velocity vector and temperature at the inlet
boundaries and perscribing a constant static pressune atitlet boundary. The inlet veloicty and temperarurgliions
correspond to the fully developed turbulent fow before dgimetjon in the main pipe (cold water) and the steadyrami
boundary condition at the inlet of the long upper branple @not water). For the main pipe, the establishingdeigaute
numerical inflow conditions required a separate percigee-flow simulation, from which the destribution otaming
velocity and tempertaure profiles have been extractedalF solid walls, the no-slip condition is togetheith the zero

temperature gradient normal to the wall /on=0.

2.2. Computational grid and solution algorithm

The solution domain for the T-junction problem spreaddauabout 20 diameters both downstream of the junctioh an
in the upstream part of the upper branch pipe and coverachlyagonal cylindrical grid with a Cartesian blockhie

centre (Fig.2). No special grid generation effort has ledlicated to capturing the wall boundary layers on the pipe
boundaries.

(@) (b)

Fig. 2 Computational grid for the T-junction configuoati full domain (a) and a zoomed-in view (b).
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The CABARET algorithm is based on introducing conservatiariables referred to the centres of the hexahedral
elements and flux variables referred to the cell f§itgs3).

At the conservation step the centre-cell variabtesupdated by summing up the fluxes over the faces belongihg to t
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where S, i=1,..,6 is the cell face normal and V is the celume. The gradients at the cell apex points are fitstioed
with the Gauss-Ostrogradsky theorem, e.g., for the x-{tgloomponent:
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where J is the number of cell faces and K is thebmurof cell volumes that correspond to the given gedkepoint, the
index b stands for the current cell centre and the indesfers to the adjacent cell. Then the gradiants atehdace
points are obtained by avearging the cell apex values.

For the cell side corresponding to the pipe wall boundbeyyelocity differenceu,; — Uy is replaced bQ,Bubj , where

B is an adjustable numerical parameter that contrelathount of momentum transfer through the viscous @all:is
used for well-resolved flow solution near the wall andvhileies 0.58<1 are used for coarse-grid simulations.
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Fig. 3 Computational space-time stencil of the CABARESthod

The conservation step is followed by the upwind extrapolatiep. At this step the cell face values on the irae step
are computed based on the characteristic decompositene. tHe one-dimensional Riemann variables are defiored f
each face normal projection
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The same decomposition is then performed for eachamdldnd cell-centre points.

After this, the new values of the Riemann variablesttaen obtained by the second-order extrapolation

R =2Ry-R,.Q, =N Q. (5)
In accordance with the maximum principle, these valueframeated if found outside the allowable min and max values
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For the inlet boundary, an inflow characteristic bougdandition is specified

P=%¢@;U(x, y,z)=U, (x,y,zt)vxy.zt)=V, Ky 21 )
WX, Y, Z) =W, (x,y,Z )T Ky .z 1)=T, &y 21)
For the main pipe, the inflow parametdgs U, ,V,. W, ,T.  are obtained from a separate precurser calcuatidrein t

single-periodic pipe domain. The parameters of the precwaleuation were adjusted so that the average flow
parameteres satisfied to the prescribed average flowitiesne.g., the experimental flow rate.

For the main outlet, the outflow characteristic boundamydition is used together with a pressure relaxatgmdition
for better numerical non-reflecting properties.

Pn =ap0ut(xiylet)+(1_a)l%’un :Rn_& . (8)
P

The above numerical algorithm has been parallelised WdiPigand METIS libraries and calculations have been
conducted at the “SKIF” Supercomputing Facility of Moscow estamiversity, HECToR UK Supercomputing Facility,
and the HPC cluster at the Moscow Institute of Nucledet$. The computational grids used range from 2tad4.3
10° cells and the total number of time steps for the sitrari has been from 100 000 to 1 000 000 time steps.

2.3. Numerical results

The CABARET solution sensitivity to the grid densitgshbeen first investigated by comparing the solutions
obtained on several grids that correspond t0°21.8 16 and 14.3 10grid cell volumes. The intermediate grid-range
solution that corresponds to the grid of 1.8 d€lls has been then submitted for the blind test catigretinstantaneous
snapshots of the temperature field for all three giidspresented in Fig.5.

(a) (b) (©)
Fig. 5. Instantaneous snap shots of the temperaturerfitid T-junction domain symmetry plane (a reduced-size
domain shown) for the grids of 2°1@), 1.8 10(b), and 14.3 0cells (c).

Not only the instantaneous velocity fields are founarnty weakly depend on the grid resolution but also their
simple time-means, r.m.s. (Fig.6a) and power-spectraltdehstributions (Fig.6b). With regard to the turbuleetocity
spectra, it can also checked that more than one decade ikbimogorov -5/3 spectrum (straight black line) is aegut
with the CABARET code even on the moderate-size gril®fLC cells.
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Fig. 6. Grid resolution independence study for the CABAREHY solution with 1.8 10and 14.3 10cells: time-
averaged x-, y- and z-velocity components, U,V and W (U1€.34.3MC and W14.3MC for the 14.3°grid) and
their r.m.s. fields in the symmetry plane at x=1.6Drfrthe junction — (a) and the power spectral density of the x

velocity component at the pipe centre — (b).

Having checked the consistency of our LES solution wenwilv discuss how our results compare with the blind test
data released. Figure 7 shows the axial temperaturédiiin (a) and its r.m.s. (b) at the sideline of thgifdction, the
axial mean velocity and its r.m.s in the sideline apehmetry plane, as predicted from the CABARET ILE&itsan
with 1.8 16 cells. The Vattenfall experiment data and the resultisrek fine-grid Fluent LES calculations (7184 16
and 70 1B cells) with a Smagorinsky subgridscale model are stmwile same plots for comparison. It can be seen that
all three solutions are in an encouraging agreement tivthexperimental data. Note that the experimental &as
supplied with the current plots are shown for an illustnatioly and have to be treated with caution.
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Fig. 7. Direct comparison with the released Vattenfgieeiment and the first post-processed CFD (Fluent) data:
temperature fields —(a),(b), axial velocity fields —(@).

3. Conclusion

A novel Implicit LES CABARET method has been introdilignd applied for the solution of the backward-facing step
and the recent OECD/NEA-Vattenfall T-junction blinekt exercise. In both cases the numerical solutiasedon
moderate grids are observed to be reasonably insertsitiiie grid density and also correctly capturing the laagde

flow dynamics in comparison with the experiment and ftier T-junction test) with other fine-grid CFD resuFsr the
T-junction problem, a reasonable solution convergenedsb demonstrated for the r.m.s. and turbulence telpoiver
spectra. Most notably, more than one decade of the ¢gunov -5/3rds spectrum is captured in all cases, which suggests
that a wide range of important dynamic range of scalesrigctly represented in the calculation.
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