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Abstract 
 
A novel high-resolution Navier-Stokes method is proposed for modelling large-scale turbulent flows. The method is 
based on the non-oscillatory low-dissipative and low-dispersive CABARET scheme. Numerical results are provided for 
the classical backward-facing step problem and for the recent OECD/NEA-Vattenfall T-junction blind-test exercise. 
 

 

1. Introduction 

Unsteady heat transfer problems that are associated with turbulent non-isothermal flow mixing are very topical for 
the thermal fatigue of industrial power plant systems. Mathematical modelling of such problems remains very 
challenging because of the poorly understood large-scale turbulence phenomena. One popular approach for modelling 
this type of flows is Implicit Large Eddy Simulation (ILES). The Implicit LES approach doesn’t have any explicit 
turbulence model and has to rely on (i) the ability of the numerical method to remove all scales smaller than the grid scale 
from the solution without affecting the resolved scales, in provision that (ii) the method’s resolution is enough to capture 
all important dynamic scales. For the latter, the use of high-resolution robust numerical methods is thus essential. Hence, 
for the numerical method our choice is the Compact Accurately Boundary Adjusting High REsolution Technique 
(CABARET) scheme that has previously been applied for solving advection-dominated problems [1-6]. In comparison 
with the standard finite-difference and finite-volume methods, in CABARET there is always an additional independent 
evolutionary variable, which gives the method the ability to preserve one more important property of the governing 
equations - the small phase and amplitude error. For solving Navier-Stokes equations with Reynolds numbers of 104, the 
method gives a very good convergence without any additional preconditioning down to Mach numbers as low as 
M~0.05-0.1 In particular for the ILES modelling of a hydrodynamic instability and free jet a 2572 grid using CABARET 
is able to produce results comparable to a conventional second-order method which would require at least 10252 grid 
points [6]. Here, the CABARET method is 30 times more efficient.  

The goal of the current paper is to further promote the ILES CABARET method for modelling of large-scale 
turbulent flows. We first consider the solution of the benchmark problem of turbulent flow over a backward facing step 
[7] and then discuss the CABARAT application for the recent OECD/NEA-Vattenfall T-junction blind test exercise [8,9]. 

1. Turbulent flow over backward facing step: example of the solution for a classical benchmark problem 

To first demonstrate the CABARET solver performance in idealised framework the flow over backward facing step 
[7] is considered. The step height S is the same as the gap between the step and the top wall boundary. The inflow 
boundary conditions are laminar, with Reynolds number=5000 and Mach number=0.1. Uniform hexahedral grids have 
been used with densities of 10 points and 20 points per the step height (S) giving a total grid size of 100 000 and 800 000 
points, respectively. The CABARET solution was obtained from conducting a fully compressible Navier-Stokes 
calculation which technical details, including the parallelization strategies, are reported elsewhere, e.g., in [10], and here 
we are just reporting the results. Figure 1 shows numerical results: the time-averaged axial velocity component and 
velocity streamlines for two grid resolutions - (a) and a snapshot of instantaneous vorticity filaments - (b).  

 

 
(a)    (b) 

 
Fig. 1. Time-averaged velocity fields for two mesh resolutions (a) and vorticity (Q-norm) iso-surfaces for the grid density 

of 20 cells per step (b). 
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The instantaneous vorticity field has a rich 3D structure typical of a high-Re turbulent flow and is in a drastic 
contrast with the 2D laminar shear-layer profile that has been used as the initial condition. We also note that the length of 
the recirculation zone after the step is in a good agreement with the reference experiment value range at this Reynolds 
number, L/S=6.5-7 [7]. 
 

2. The CABARET solution of the T-junction problem 

2.1 Governing equations and boundary conditions 

The modelling of thermo-hydraulic turbulent flow in the T-junction corresponding to the OECD/NEA-Vattenfall T-
junction blind test conditions [8,9] is discussed next.  

The water flow in mixing tees is modelled by the system of slightly compressible Navier-Stokes equations: 
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where 0ρ  is the constant density, u,v,w are the x-, y- and z- Cartesian coordinate system velocity components; p is the 

pressure, υ  is the kinematic viscosity and c is the sound speed. We note that, for the sake of numerical efficiency with the 
current compressible flow solver, instead of the physical value for the sound speed in water an effective sound speed is 

used. The latter corresponds to a small subsonic Mach number 2 2 2
0 / 0.1 0.2,M u v w c= + + ≈ −  for which the 

compressibility effects on the turbulent eddies convected in the flow should be small. The apostoriori checks have 
confirmed that the numerical solution remains fairly insensitive to the Mach number variation within this range. 

The external boundary conditions correspond to specifying the full velocity vector and temperature at the inlet 
boundaries and perscribing a constant static pressure at the outlet boundary. The inlet veloicty and temperarure conditions 
correspond to the fully developed turbulent fow before the junction in the main pipe (cold water) and the steady laminar 
boundary condition at the inlet of the long upper branch pipe (hot water). For the main pipe, the establishing of adeqaute 
numerical inflow conditions required a separate percurser pipe-flow simulation, from which the destribution of incoming 
velocity and tempertaure profiles have been extracted. For all solid walls, the no-slip condition is together with the zero 
temperature gradient normal to the wall, / 0T n∂ ∂ = . 

2.2. Computational grid and solution algorithm 

The solution domain for the T-junction problem spreads out for about 20 diameters both downstream of the junction and 
in the upstream part of the upper branch pipe and covered by a hexagonal cylindrical grid with a Cartesian block in the 
centre (Fig.2). No special grid generation effort has been dedicated to capturing the wall boundary layers on the pipe 
boundaries. 

 

 

 

 

(a)      (b) 

Fig. 2 Computational grid for the T-junction configuration: full domain (a) and a zoomed-in view (b). 
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The CABARET algorithm is based on introducing conservation variables referred to the centres of the hexahedral 
elements and flux variables referred to the cell faces (fig.3). 

At the conservation step the centre-cell variables are updated by summing up the fluxes over the faces belonging to the 
same cell:  
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where iS , i=1,..,6 is the cell face normal and V is the cell volume. The gradients at the cell apex points are first obtained 

with the Gauss-Ostrogradsky theorem, e.g., for the x-velocity component: 

( ) ( ) ( )
1 1 1

1 1 1

, ,
2 2 2

J J J

xj bj fj yj bj fj zj bj fj
j j j

K K K

k k k
k k k

S u u S u u S u u
u u u

x y z
V V V

= = =

= = =

− − −
∆ ∆ ∆= = =
∆ ∆ ∆

∑ ∑ ∑

∑ ∑ ∑
.    (3) 

where J is the number of cell faces and K is the number of cell volumes that correspond to the given cell apex point, the 
index b stands for the current cell centre and the index f refers to the adjacent cell. Then the gradiants at the cell-face 
points are obtained by avearging the cell apex values. 

For the cell side corresponding to the pipe wall boundary, the velocity difference fjbj uu −  is replaced by bjuβ2 , where β
 is an adjustable numerical parameter that controls the amount of momentum transfer through the viscous wall: 

β
=1 is 

used for well-resolved flow solution near the wall and the values 0.5<
β
<1 are used for coarse-grid simulations. 

 

Fig. 3 Computational space-time stencil of the CABARET method 

 

The conservation step is followed by the upwind extrapolation step. At this step the cell face values on the new time step 
are computed based on the characteristic decomposition. Here the one-dimensional Riemann variables are defined for 
each face normal projection  
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The same decomposition is then performed for each cell-face and cell-centre points. 

After this, the new values of the Riemann variables are then obtained by the second-order extrapolation 

2 , 2n csb b n csf fR R R Q Q Q= − = − .      (5) 

In accordance with the maximum principle, these values are truncated if found outside the allowable min and max values 
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For the inlet boundary, an inflow characteristic boundary condition is specified 

0 ; ( , , , ) ( , , , ); ( , , , ) ( , , , )
2

( , , , ) ( , , , ); ( , , , ) ( , , , )

n in
in in

in in

R Q
P c u x y z t U x y z t v x y z t V x y z t

w x y z t W x y z t T x y z t T x y z t

ρ −= = =

= =
   (7) 

For the main pipe, the inflow parameters , , , ,in in in in inQ U V W T  are obtained from a separate precurser calcuation in the 

single-periodic pipe domain. The parameters of the precurser calcuation were adjusted so that the average flow 
parameteres satisfied to the prescribed average flow quantities, e.g., the experimental flow rate. 

For the main outlet, the outflow characteristic boundary condition is used together with a pressure relaxation condition 
for better numerical non-reflecting properties.  
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The above numerical algorithm has been parallelised using MPI and METIS libraries and calculations have been 
conducted at the “SKIF” Supercomputing Facility of Moscow State University, HECToR UK Supercomputing Facility, 
and the HPC cluster at the Moscow Institute of Nuclear Safety. The computational grids used range from 2.105 to 14.3 
106 cells and the total number of time steps for the simulation has been from 100 000 to 1 000 000 time steps. 

2.3. Numerical results 

The CABARET solution sensitivity to the grid density has been first investigated by comparing the solutions 
obtained on several grids that correspond to 2.105, 1.8 106 and 14.3 106 grid cell volumes. The intermediate grid-range 
solution that corresponds to the grid of 1.8 106 cells has been then submitted for the blind test competition. Instantaneous 
snapshots of the temperature field for all three grids are presented in Fig.5.  

 
(a)       (b)   (c) 

Fig. 5. Instantaneous snap shots of the temperature field in the T-junction domain symmetry plane (a reduced-size 
domain shown) for the grids of 2.105 (a),  1.8 106 (b), and 14.3 106 cells (c). 

 
Not only the instantaneous velocity fields are found to only weakly depend on the grid resolution but also their 

simple time-means, r.m.s. (Fig.6a) and power-spectral density distributions (Fig.6b). With regard to the turbulent velocity 
spectra, it can also checked that more than one decade of the Kolmogorov -5/3 spectrum (straight black line) is captured 
with the CABARET code even on the moderate-size grid of 1.8 106 cells. 
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(a)       (b) 

Fig. 6. Grid resolution independence study for the CABARET ILES solution with 1.8 106 and 14.3 106 cells: time-
averaged x-, y- and z-velocity components, U,V and W (U14.3MC,V14.3MC and W14.3MC for the 14.3 106 grid) and 

their r.m.s. fields in the symmetry plane at x=1.6D from the junction – (a) and the power spectral density of the x-
velocity component at the pipe centre – (b). 

 
Having checked the consistency of our LES solution we will now discuss how our results compare with the blind test 

data released. Figure 7 shows the axial temperature distribution (a) and its r.m.s. (b) at the sideline of the T-junction, the 
axial mean velocity and its r.m.s in the sideline and symmetry plane, as predicted from the CABARET ILES solution 
with 1.8 106 cells. The Vattenfall experiment data and the results of three fine-grid Fluent LES calculations (7 106, 34 106  

and 70 106 cells) with a Smagorinsky subgridscale model are shown on the same plots for comparison. It can be seen that 
all three solutions are in an encouraging agreement with the experimental data. Note that the experimental error bars 
supplied with the current plots are shown for an illustration only and have to be treated with caution. 

 
(a)    (b) 

 
(c)    (d) 

Fig. 7. Direct comparison with the released Vattenfall experiment and the first post-processed CFD (Fluent) data: 
temperature fields –(a),(b), axial velocity fields – (c),(d). 

 
 
3. Conclusion 
 
A novel Implicit LES CABARET method has been introduced and applied for the solution of the backward-facing step 
and the recent OECD/NEA-Vattenfall T-junction blind test exercise. In both cases the numerical solutions based on 
moderate grids are observed to be reasonably insensitive to the grid density and also correctly capturing the large-scale 
flow dynamics in comparison with the experiment and (for the T-junction test) with other fine-grid CFD results. For the 
T-junction problem, a reasonable solution convergence is also demonstrated for the r.m.s. and turbulence velocity power 
spectra. Most notably, more than one decade of the Kolmogorov -5/3rds spectrum is captured in all cases, which suggests 
that a wide range of important dynamic range of scales is correctly represented in the calculation. 
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