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CSNI Safety Issues and Topics (1/3)

� Shrinking nuclear infrastructure

– Knowledge Management

– Experimental Facility Loss

� Increased public expectation on safety in use of nuclear 
energy

– Use of Risk-Informed Regulation

– Transparent technical basis for safety assessment
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CSNI Safety Issues and Topics (2/3)

� Industry initiatives to improve economics and safety 
performance

– Management Strategies

– Maintaining Safety Margins

– Fuel and Fuel Cycle Safety

– Maintaining Safety Culture
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CSNI Safety Issues and Topics (3/3)

� Necessity to ensure safety over plant lifecycle

– Ageing management

– New risk perspective and safety requirements

– Risk management across operating modes

� New reactors and new technology

– Digital technology

– New materials and fabrication technologies

– New concepts of operation

– New methods and tools
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SESAR/SFEAR: TH Safety Issues with relevance for 
maintaining key research facilities (1/2)

Issue Safety relevance of 
issue

State of knowledge on 
issue

Boron dilution Medium High

Passive safety system 
performance

High Medium

Non-pipe breaks Medium Low

S. G. tube rupture High High

Stability and power 
oscillations

High Medium

ECCS strainer clogging High Medium

Pressure tube reactor 
T/H

High Medium
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SESAR/SFEAR: TH Safety Issues with relevance for 
maintaining key research facilities (2/2)
Issue Safety relevance of 

issue
State of knowledge on 
issue

Two-phase natural 
circulation

High Medium

Thermal stratification Low Medium

Thermal cycling Low Medium

Moderator T/H Medium High

3-D core flow distribution Medium Medium

Downcomer flow 
distribution

Low Medium

Accidents initiated during 
shutdown

High Medium
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Enlarged Role of CFD for NRS

� CFD has a wider field of application in NRS than coolant 
system T/H, e. g.

– Severe accident phenomena in the containment, 

� H2 distribution and combustion

� Aerosol and FP distribution

� Fibre material in the sump

– Fires in confined space or arrangements of rooms

– Melt behaviour in vessel lower head

� Education & Training: Advanced simulation methods

� Link to non-nuclear industries
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Simulation of H2-Combustion with CFX

� Simulation of turbulent  
flame propagation with CFX

� Validation of combustion models

� Successful post-test calculations 
for experiments in Russian RUT 
facility and in German Battelle-
Model-Containment
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Clogging Issue: Particle Transport in the Sump
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Experimental and modelling 
activities in progress for 

characterizing particles and 
their transport in sump 
water flows, including 

entrainment of air



Technical Safety 
Organisations (TSOs)

� TSOs are public organisations that 

– perform evaluations on nuclear safety and the radiation protection in a 
regulatory background

– assure independence of technical judgements

� Technical Safety Organisations are committed to perform safety research. 
The TSO Concept explicitly states among the required characteristics that 
“a TSO maintains an R&D programme allowing the development of new
knowledge and techniques in support of its missions, and an independence of 
judgement from licensees”.
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Extensive Validation Necessary for Accepting CFX for 
Safety-Cases

� Systematic validation on basic experiments, SETs and Its -> 
Validation matrix covering phenomena and scale

� Importance of preserving the link to large existing experimental
data base

– Integral system tests, e. g. BETHSY, PKL, LSTF, LOFT

– Large SETs, e. g. UPTF

– Empirical pressure loss and heat transfer correlations
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Test Facility UPTF



UPTF TRAM C 
Experiment: 
CFX Calculation

ECC-injection, 
time = 45 s
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UPTF TRAM C 
Experiment: 
CFX Calculation

ECC-injection, 
time = 100 s
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UPTF TRAM C Experiment: CFX Calculation

Top and bottom view of the lower plenum mesh
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Reducing the User Influence

� Previous assessment of code predictions, e. g. benchmarks, 
ISPs, uncertainty studies, identified the “code user effect” as a 
major source of uncertainty

� A large part of the user effect could be traced back to 
nodalisation, esp. for coarse 3D or quasi-3D volume-and-
junction arrangements

� CFD should contribute to mitigate this effect

� User effect remains important: high sensitivity to boundary 
conditions, choice of turbulence model, etc.

� BPGs have limitations in practice
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WWER-440 
Containment
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Experimental Facility ThAI

� ThAI-Facility:

� Height: 9.2 m

� Diameter: 3.2 m

� Volume: 60 m³

� Internals: Inner cylinder, blower,  
condensate tray

� Experiments for gas distribution 
stratification temperature condensation 
combustion, aerosols, iodine

[Fig.: Becker-Technologies]
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Test TH-18: Gas injection at high elevation

� Structured grids with 166.000 to 1.188.000 
elements

� Mass flow at blower exit: 4.47 kg/s

� Different turbulence models used 
(k-ε, SST, SSG)
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Vertical flow velocity at 8.0 m
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Comparison of discretisation error and calculation time
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Investigating the Influence of Turbulance Models

� Variation of turbulence mode (2-equation models SST and 
k-ε) 

� Variation of parameters (e. g. turbulent Sc-no., product-
limiter etc.) 

� Discussing the results with code developers and users
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Test TH-20: break-up of stratified layer by a jet   

� Test starts from a stable He-layer

� Jet from the blower erodes the layer 

� He-concentrations measured at 
various locations and compared to 
calculation 
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CFX-Simulation of ThAI 
Vessel

Inlet

Outlet

� Blower not simulated, velocity 
profile at blower exit given as 
boundary condition

� Grid of 280.000 cells

� Grid variations show that 
refinement would be necessary, 
however, computing time is 
limiting 
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Questions to CFD Application
� CFD for everything?

High effort in generating problem dependent models and speed of computation 
set limits; coupling with system scale or medium scale codes required

� One unique CFD code sufficient?

– two-phase modelling not yet consolidated; benchmarking several codes has 
its merits

– dedicated tools for specific problem areas will remain, e. g. electrical cabinet 
fires, fire-ball after aircraft crash

� Independence of safety assessment when using “commercial” codes?

– User should know, the validation basis of models and limitations of 
applicability

– BPGs must be applicable, uncertainty should be quantified
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PWR 
Containment
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Distribution of Air, Vapour and H2

Generating the computational 
grid for a PWR containment 

(Konvoi type) 
is resource consuming
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Co-operation

Huge task of developing, validating and sharing user experience
requires a co-ordinated approach:

� Domestic, e. g. German CFD-network

� Europe: 

– Code platform NURESIM

– SNE-TP: Strategic Research Agenda

� OECD: Follow-up to GAMA activities

� Sustainable forms of co-operation necessary
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German CFD-Network & International Observers
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The NURESIM roadmap



Sustainable Nuclear 
Energy Technology 

Platform (SNE-TP)

Launched in Brussels
on 21/09/07

A vision report
endorsed by
35 European 

organisations

www.snetp.eu
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Sustainable Nuclear Energy Technology Platform (SNE-TP)
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Conclusion

� CFD is expected to resolve a number of present safety issues 

� CFD will play an important role in designing future NPPs

� Accepting CFD for demonstrating safety requires thorough 
validation, including the existing large data base 

� Attention has to be paid to the user effect by applying BPGs 
and uncertainty evaluation

� The huge task for developing, validating and applying CFD 
calls for sharing work and experience by sustainable forms of 
co-operation 
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