### **Global Outlook for Decommissioning**

Patrick O'Sullivan,

Waste Technology Section,
Nuclear Energy Department,
International Atomic Energy Agency

**16 November 2011** 

NEA Offices, Issy-les-Moulineaux





### Agenda

- Background
- Future decommissioning overview of global situation
- Focus on Germany and Russian Federation
- Constraints on decommissioning programmes
- Conclusions



#### **Background: Statute of the IAEA**

#### Article II

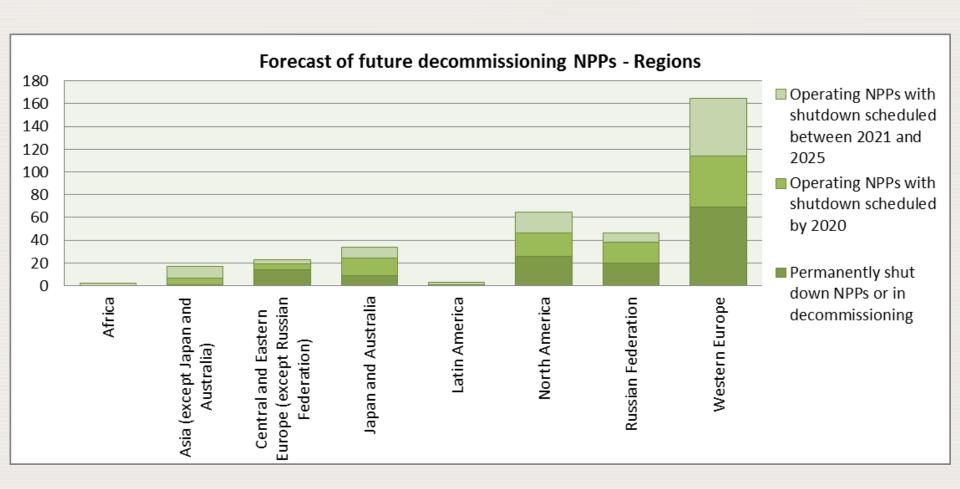
Objectives – The Agency shall seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world. It shall ensure, so far as it is able, that assistance provided by it or at its request or under its supervision or control is not used in such a way as to further any military purpose.

#### Article III

Para A.6. The Agency is authorized to establish or adopt ... standards of safety for protection of health and minimization of danger to life and property, and to provide for the application of these standards ..."

#### Article VIII

The agency shall take positive steps to encourage the **exchange among its members of information** relating to the nature and peaceful uses of atomic energy and shall serve as an intermediary among its members for this purpose.



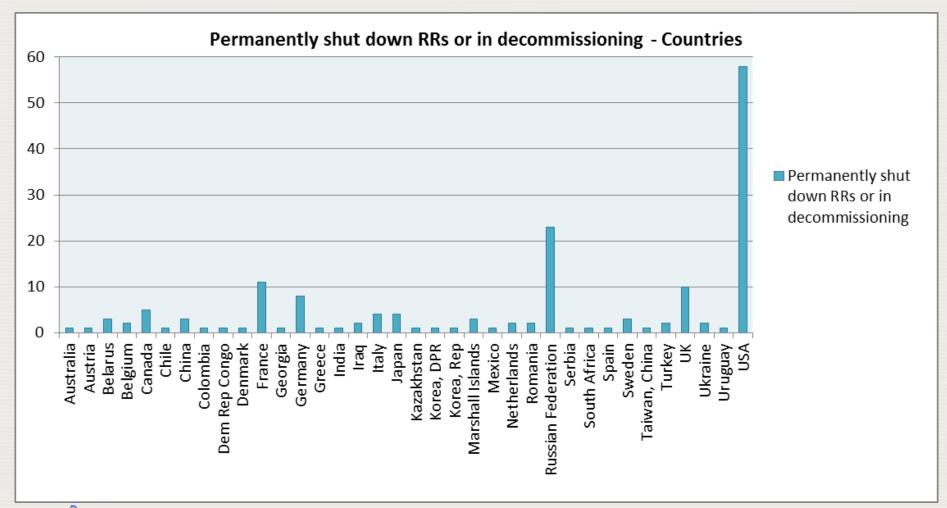

#### **Nuclear Power Plants – Global Status**

| In operation | Shutdown/under decommissioning | Fully decommissioned |  |
|--------------|--------------------------------|----------------------|--|
| 440          | 139                            | 11                   |  |



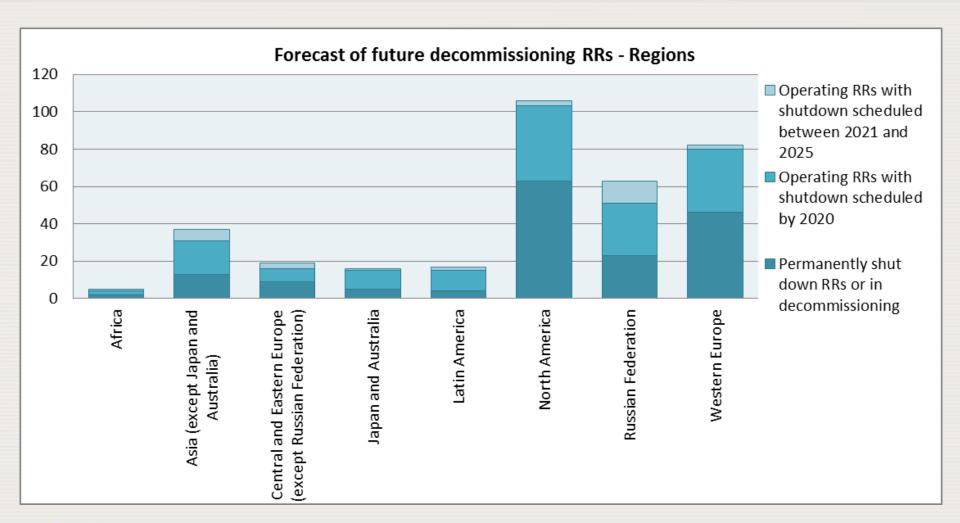
### Future NPP Decommissioning – by Region






#### **Research Reactors – Global Status**

| In operation | Shutdown/under decommissioning | Fully decommissioned |  |
|--------------|--------------------------------|----------------------|--|
| 241          | 165                            | 431                  |  |



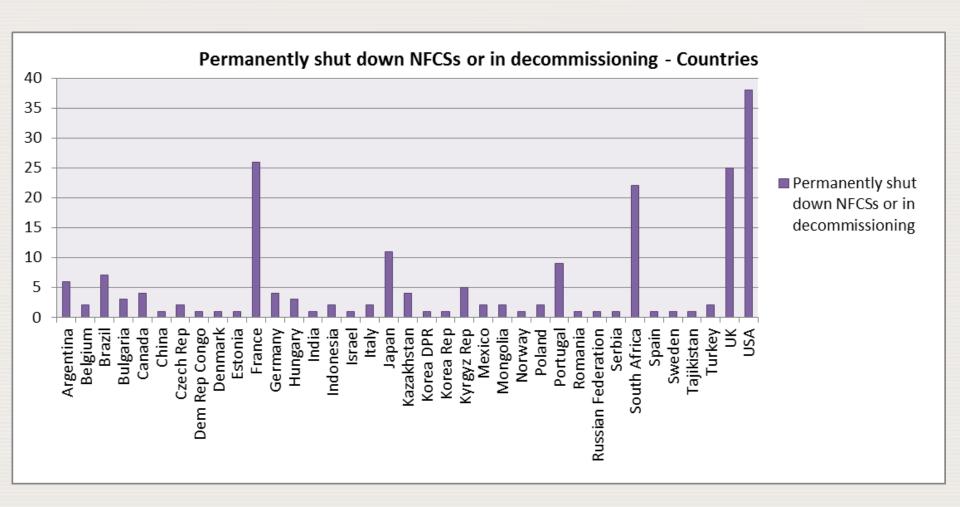

### **Future Research Reactor Decommissioning – by Country**





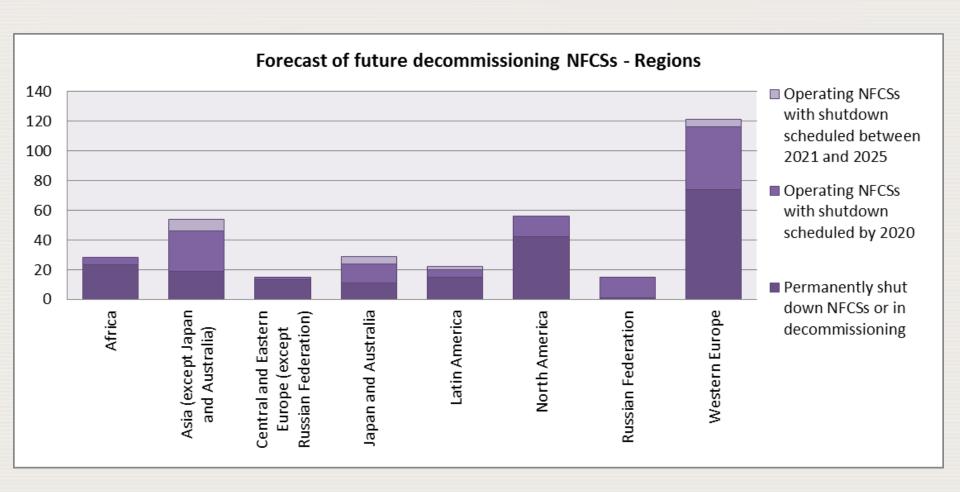
### Future Research Reactor Decommissioning – by Region






### **Future Fuel Cycle Facilities – Global Status**

| In operation | Shutdown/under decommissioning | Fully decommissioned |  |
|--------------|--------------------------------|----------------------|--|
|              | 198                            | 172                  |  |




### **Future Fuel Cycle Facility Decommissioning – by Country**





### Future Fuel Cycle Facility Decommissioning – by Region





Overview of finished and actual decommissioning projects [from Ackermann, IDN Forum 2011]

Decommissioning of nuclear facilities in Germany – ongoing and completed decommissioning projects



Prototype / Commercial Reactor shut down / under decommissioning



Prototype / Commercial reactor decommissioning completed



Research Reactor shut down / under decommissioning



Research Reactor decommissioning completed



Nuclear Fuel Cycle Facility shut down / under decommissioning



Nuclear Fuel Cycle Facility decommissioning completed





### Overview of finished and actual decommissioning projects - prototype reactors [from Ackermann, IDN Forum 2011]

© RML

# Past and current decommissioning projects of prototype reactors

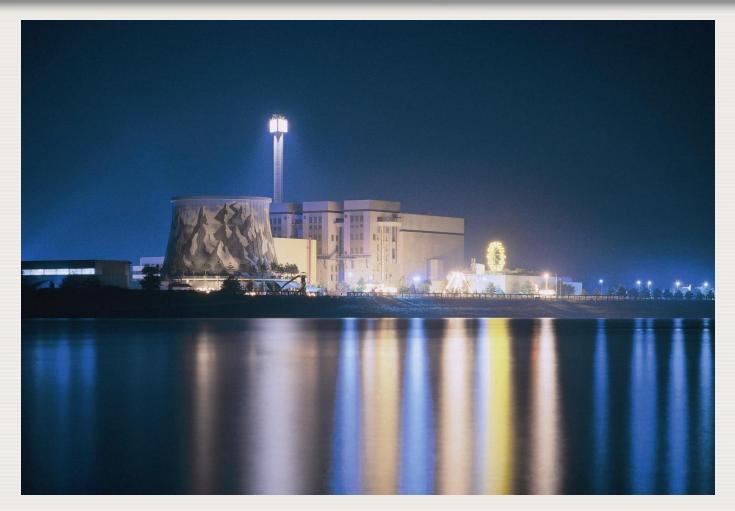
- a) Total: 19
  - Removed: 3
  - Under dismantling: 14
  - Safe enclosure: 2
- b) Reactor types: PWR, BWR, Fast Breeder, High Temperature Gas Cooled, Heavy Water Gas Cooled

### **Outlook for prototype reactors**

- a) Dismantling of Lingen NPP, currently in Safe Enclosure
- b) 8 NPPs finally shut down due to changed atomic law as a consequence of Fukushima accident



### Germany: Overview of finished and actual decommissioning projects - Prototype reactors [from Ackermann IDN Forum 2011]


| Plant              | Туре  | Power<br>(MWe) | Period of<br>Operation | Status         |
|--------------------|-------|----------------|------------------------|----------------|
| VAK Kahl           | BWR   | 16             | 1960-85                | Removed        |
| MZFR Karlsruhe     | PWR   | 58             | 1965-84                | Dismantling    |
| AVR Jülich         | GCHTR | 15             | 1966-88                | Safe Enclosue  |
| HDR Karlstein      | BWR   | 25             | 1969-71                | Removed        |
| KKN Niederaichbach | GCR   | 106            | 1972-74                | Removed        |
| KNK-II Karlsruhe   | FSCR  | 20             | 1977-91                | Dismantling    |
| THTR Hamm-Uentrop  | GCHTR | 308            | 1984-88                | Safe Enclosure |
| SNR 300 Kalkar     | FSCR  | No nuclea      | ar operation           | Leisure Park   |

BWR: Boiling Water Reactor GCHTR: Gas Cooled High Temperature Reactor FSCR: Fast Sodium Cooled Reactor GCR: Gas Cooled Reactor



PWR: Pressure Water Reactor

### Overview of finished and actual decommissioning projects - prototype reactors [from Ackermann IDN Forum 2011]



Leisure Park Kalkar



### Overview of finished and actual decommissioning projects - Power reactors [from Ackermann IDN Forum 2011]

| Plant                | Туре | Power<br>(MWe) | Period of Operation | Status            |
|----------------------|------|----------------|---------------------|-------------------|
| KKR Rheinsberg       | PWR  | 70             | 1966-90             | Under dismantling |
| KRB-A Gundremmingen  | BWR  | 250            | 1966-77             | Under dismantling |
| KWL Lingen           | BWR  | 254            | 1968-77             | Safe enclosure    |
| KWO Obrigheim        | PWR  | 357            | 1968-05             | Under dismantling |
| KWW Würgassen        | BWR  | 670            | 1971-95             | Under dismantling |
| KKS Stade            | PWR  | 672            | 1972-03             | Under dismantling |
| KGR-1 Greifswald     | PWR  | 440            | 1973-90             | Under dismantling |
| KGR-2 Greifswald     | PWR  | 440            | 1974-90             | Under dismantling |
| KGR-3 Greifswald     | PWR  | 440            | 1977-90             | Under dismantling |
| KGR-4 Greifswald     | PWR  | 440            | 1979-90             | Under dismantling |
| KGR-5 Greifswald     | PWR  | 440            | 1989-90             | Under dismantling |
| KMK Mühlheim-Kärlich | PWR  | 1302           | 1986-88             | Under dismantling |

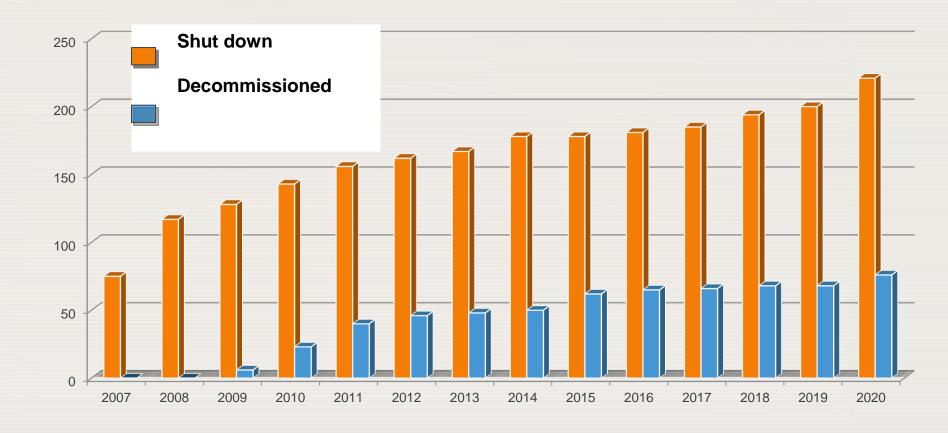


### Overview of finished and actual decommissioning projects - Research reactors [from Ackermann IDN Forum 2011]

### Past and ongoing decommissioning projects of research reactors

- a) Total: 37
  - Removed: 28
  - Under dismantling: 3
  - Safe enclosure: 2
  - Final shut down / application for licence: 4
- b) Variety of types of research reactors
  - Argonaut type
  - Critical assembly
  - Educational reactors
  - Liquid homogenous reactor
  - Propulsion reactor
  - Pool reactor (incl. TRIGA type)
  - Heavy water reactor (incl. DIDO type)




### Overview of finished and actual decommissioning projects - nuclear fuel cycle facilities [from Ackermann IDN Forum 2011]

### Past and ongoing decommissioning projects of nuclear fuel cycle facilities

- a) Total: 11
  - Removed: 7
  - Safe enclosure: 0
  - Under dismantling: 4
- b) Final shut down / application for licence: 0



# Decommissioning Strategy for Russian Nuclear Legacy Facilities [from Kudryavtsev, IAEA General Conference Side Event 2011]





#### **Decommissioning Plans**

[from Kudryavtsev, IAEA General Conference Side Event 2011]

2010 : preparatory work for the decommissioning started for 151 facilities

### Tasks to be solved for Decommissioning Planning:

- Prioritization of decommissioning phases
- Secure availability of decommissioning funds
- Provide availability of the decommissioning technology and infrastructure



#### **Constraints for Full-scale Decommissioning (Rosatom)**

[from Kudryavtsev, IAEA General Conference Side Event 2011]

- Most nuclear sites under consideration include both operated and shut-downed facilities with a common infrastructure
- No large funds accumulated for decommissioning projects work funded from Federal budget & reserves
- High cost for transportation and storage of radioactive waste
- No facilities available for the final disposal of long-lived waste
- Most shutdown nuclear facilities store/contain nuclear materials and/or spent fuels to be removed for centralized storage or reprocessing
- No clear legislation and financial basis exists for large-scale decommissioning projects



## General Conference Side Event "Constraints to implementing D&D and ER" – (1)

- Aim: to understand why progress with D&D and ER in many countries is slow or negligible
- Main participants: UKTI (co-host); US; Russia; Japan; Kazakhstan; EBRD and European Commission
- Fundamental requirements for D&D and ER projects:
  - Legal and regulatory framework
  - Funding
  - Access to specialist resources (human and technological)



## General Conference Side Event "Constraints to implementing D&D and ER" – (2)

#### Important Considerations:

- Institutional arrangements for liability and project management need to ensure efficient use of scarce national resources
- Waste disposal routes need for integrated approaches to waste management
- Technical expertise is concentrated in a small number of countries –
   need to create an environment that more easily allows technology and expertise to be transferred between countries



## IAEA General Conference Side Event "Constraints to implementing D&D and ER" – (3)

#### Next steps:

- General support for the establishment of mechanisms to study current international best practices in a systemic way, e.g. through the formation of a working group to study and report on the issues
- Such a group may consider whether new institutional arrangements at international level (encompassing a multi-donor framework) may be needed



#### **Conclusions**

- Public confidence in the nuclear industry cannot be taken for granted; need to work continuously to improve its structures and working arrangements
- Key requirement: an appropriate legal and institutional framework including funding systems
- Arrangements for capturing and sharing experience from ongoing decommissioning projects are of crucial importance
- Need to create an environment where technology and expertise
   developed in advanced programmes may more easily be applied in others



