

EPRI Research and Development Projects for NPP Decommissioning

Rich McGrath Principal Technical Leader

IFE Workshop on Current and Emerging Methods for Optimising Safety and Efficiency in Nuclear Decommissioning

> Sarpsborg, Norway 7 - 9 February 2017

EPRI Decommissioning

Technology Program Overview (1/2)

Program Objective

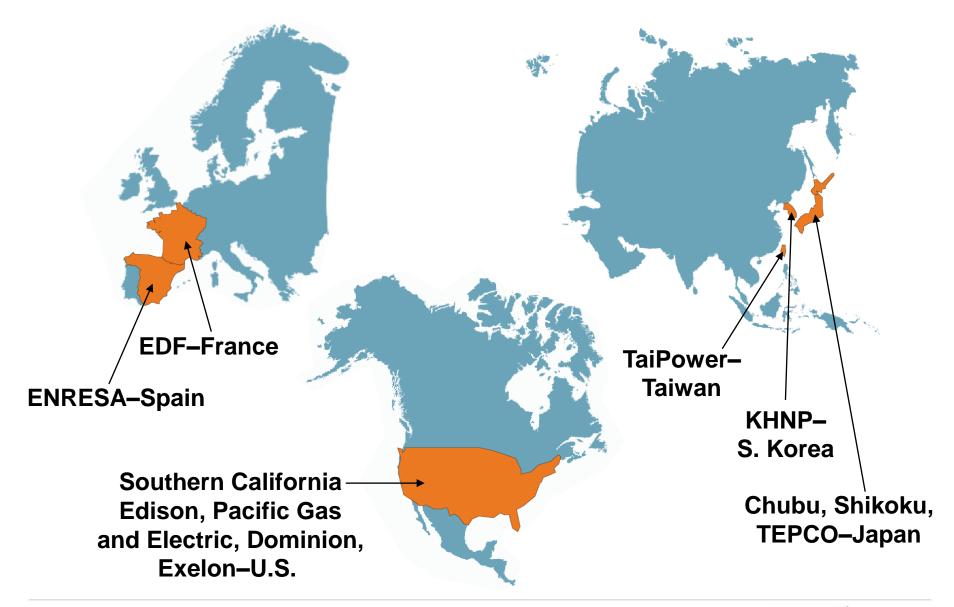
 To provide technical guidance for the planning and conduct of facility decommissioning

Program Strengths

- Documentation of more than 20 years experience in the successful decommissioning of commercial power plants (more than 100 EPRI reports published)
- More than 20 years of R&D results covering all critical technical areas in plant decommissioning
- Offers a forum for utilities to share current experiences and state-of-the-art technologies for plant decommissioning

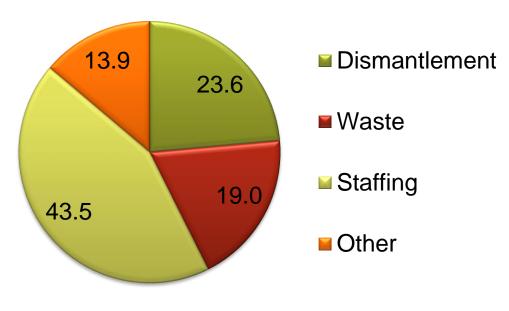
US Decommissioning Workshop: Charlotte, North Carolina June 19-20, 2017 International Decommissioning Workshop: Lyon, France October 24-25, 2017

EPRI Decommissioning Technology Program Overview (2/2)


- Guidance for key decommissioning activities
- Enhanced technologies in critical areas influencing safety, cost, schedule, risk and staff requirements
- Documentation of experience and synthesis of lessons learned to develop best practice guidance
- Examples:
 - Decommissioning planning guidance
 - Decontamination for decommissioning process development
 - Guidance for site characterization and release
 - Guidance for waste management
 - Experience with reactor vessel and internals segmentation

Program results applicable to all plant designs and all countries

Decommissioning Technology Program Membership



Decommissioning Research and Development Drivers (1/2)

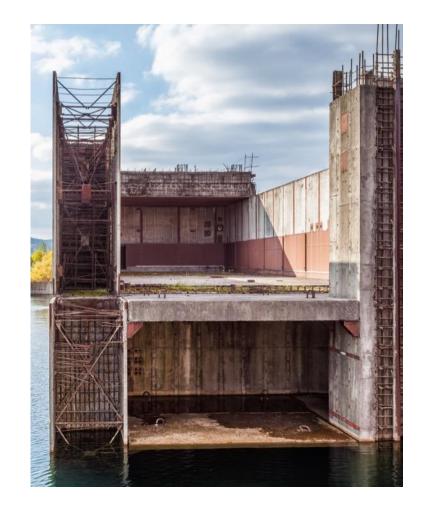
- Technologies exist for successful decommissioning
- Overall cost driven by utility staffing cost ("hotel load")
- Technology improvements needed to shorten duration
 - Cost of staffing during decommissioning: 25M Euro/year or more

U.S. Cost Categories as Percentage of Total Costs

EPRI Report: Decommissioning Experiences and Lessons Learned: Decommissioning Costs (#1023025, 2011)

Decommissioning Research and Development Drivers (2/2)

- A large volume of waste material is generated during decommissioning
 - Radioactive, hazardous and non-radioactive/below clearance limit
 - Accurate estimation, tracking and characterization are critical
 - Optimized treatment and packaging options for efficient waste handling can have a substantial effect on costs
- Decommissioning is a complex process: effective planning and project monitoring is critical
 - Regulatory requirements apply throughout the process
 - Substantial involvement of external stakeholders
 - Management of multiple contractors/subcontractors
 - Little in-house expertise exists for most utilities



Recent and Ongoing EPRI Research

Decommission Planning

- Lessons learned from completed projects are key inputs to planning
- Most regulators require some level of planning throughout plant operations
 - Necessary to establish set-asides for decommission fund
 - Inaccuracies in planning may result in budget shortfalls during decommissioning
- Detailed planning should optimally be started no later than five years before permanent plant shutdown
 - Address early and long-lead decommissioning activities
- Relevant EPRI report published in 2016

Estimated costs in excess of 50M Euro attributed to lack of time for good planning at several early-shutdown plants in the 1990s

Groundwater Monitoring During Decommissioning Planning

- Recent regulation and guidance in the U.S. has increased the focus on subsurface contamination at NPPs
- International guidance concerning drinking water standards also provides levels for consideration outside the U.S.
- Requirements and Scope of Groundwater Monitoring Programs differ for operations and decommissioning at NPPs

- Guidance provided in the following documents can be used to help address these regulations and guidance during operations and decommissioning of nuclear facilities:
 - Nuclear Energy Institute (US) 07-07, Groundwater Protection Initiative
 - EPRI Groundwater Protection Guidelines
 - EPRI Soil and Groundwater Remediation Guidelines
- Guidance specific to decommissioning planning provided in EPRI Groundwater Monitoring Guidance for Decommissioning Planning (published in 2016)

Review and Assessment of Robotic Systems and Process Automation for Commercial NPP Decommissioning

Issue

 Use of robotics/automated systems offer a substantial benefit with respect to worker safety, exposure reduction, project cost and overall schedule

Project Goal

- Systematic evaluation of decommissioning tasks to determine those that would benefit from use of automated systems/robotics
- Evaluate available automated and robotic systems used in non-decommissioning/ non-nuclear applications

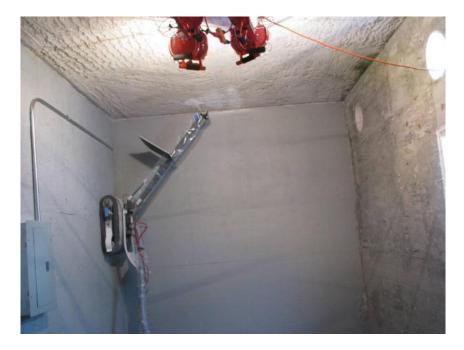
Project Benefit

 Informs Future R&D in development of new technologies for performance of critical decommissioning tasks

Decommissioning Waste Management Tracking Software Technical Specification

- A large quantity of waste is generated during decommissioning.
- Waste is typically handled many times before it is transported for disposal.
- It is critical to track waste from the point of generation to final packaging for disposal
- EPRI project developed technical specification software to uniquely track decommissioning waste through the preparations for shipment to final waste disposal
- Benefits included an integrated, industry-standard approach to waste tracking during decommissioning
 - Benefits work-flow management
 - Cost reductions, particularly with respect to waste characterization and classification

Decommissioning Wiki Database


- A wealth of experience is available from completed and ongoing decommissioning projects
- Experience largely captured in more than 30 EPRI reports
- There is a need for a searchable data base for decommissioning experience covering all areas (planning, execution, site characterization and release)
- Project Status
 - Began development of Wiki-format database in 2016
 - Database roll out to EPRI program members in early 2017
 - Additional functionality, content and access to be added through 2018

Development/Demonstration of US Department of Energy D&D Technologies for Commercial Power Plant Decommissioning

- More than 20 years of R&D experience available in the US DOE Environmental Management program
 - Field-proven technologies in all areas related to facility decontamination and dismantlement
- Project objectives
 - Review technologies
 - Collaborative demonstration of promising field-proven technologies
 - Collaborative R&D to develop new technologies

Integrated Remote Platform for Application of Fixatives on Vertical Surfaces at Oak Ridge

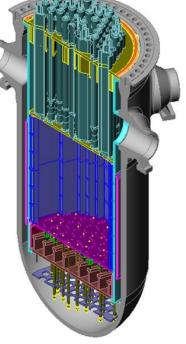
EPRI Report: Assessment of US Department of Energy D&D Technologies for Commercial Power Plant Decommissioning, 3002005411, 2015

DOE Collaboration Project Approach

- Work Completed:
 - Status of past and current DOE R&D projects evaluated
 - Technologies identified for further development or demonstration identified
- Proposed 2017 2018 scope is to complete at least two of the following based on 2016 work:
 - Develop a DOE technology(s) to a field-ready state
 - Conduct a field demonstration of a field-ready DOE technology not previously demonstrated
- Research Value:
 - Schedule reduction can have very large cost benefit as the expenditure rate during plant decommissioning can be in the range of 300,000 Euro per day.
 - It is expected that this project will help to reduce the overall cost of decommissioning

Decommissioning Sourcebook Project

- Develop a sourcebook for planning and execution of nuclear plant decommissioning based on:
 - The investigation and analysis of previous NPPs decommissioning experiences
 - Consideration of new developments and lessons learned
 - The regulatory requirements and guidance in various countries
 - Other considerations such as cost and the availability of waste disposal
- Key decommissioning activities to be covered:
 - Decommissioning strategies
 - Decommissioning milestones and schedules
 - Site characterization
 - Decontamination methods for primary loop, equipment and concrete
 - Segmentation methods (including Reactor Pressure Vessel, Reactor Internals, Steam Generator, Pressurizer, etc.)
 - Dismantlement and demolition methods for SSCs
 - Recycling of decommissioning wastes (including metals, concrete, etc.)
 - Site remediation and release
 - Decommissioning radioactive waste management strategies (including treatment)



Application of Robotics and System Automation to the Segmentation of the Reactor and Reactor Internals

Why Focus on Reactor Internals Segmentation?

- Typically one of the most challenging nuclear power plant decommissioning tasks
- Cutting of the various assemblies typically must be performed underwater to minimize exposures.
- Experience is that the technologies used have shortcomings.
- Has led to high personal exposures, long project durations, and high total costs.
- Previous EPRI work on automation has focused on:
 - Phase 1 (2014-2015): evaluation of all decommissioning tasks to identify candidate tasks for automation
 - Results: highest priority tasks are reactor internals segmentation, site characterization and concrete decontamination

EPRI Project: System Automation for Reactor Internals Segmentation (2016 – 2019)

- Objective: Develop a system automation approach to manipulator and/or cutting technologies that can safely reduce the duration of reactor internals segmentation projects.
- 2016 Identified candidate technologies for further development and/or testing including:
 - Underwater laser cutting
 - Improved saw technologies
 - Automated visual guidance control of cutting and segment handling
 - EPRI Report to be published in early 2017
- 2017/2018 Development of technologies identified in 2016 work via small scale testing.
- 2018/2019 Based on the results of the small scale testing, full scale non-rad testing
- 2019/2020 Based on non-rad testing, a full scale field demonstration would be conducted.

Segmentation Plan for Reactor Internals

Together...Shaping the Future of Electricity

