# Footprint reduction: Liquid and solid waste reduction by using Reversed Osmosis

R.M. de Vos\*, T.T. Tomasberger, J.M. Reij

Nuclear Research and consultancy Group (NRG), Westerduinweg 3, NL-1725LE, Petten, The Netherlands \*devos@nrg.eu

## INTRODUCTION

• Objective: Reduce amount of heavy metals and radionuclides with RO

Reduce amount of solid secondaire radioactive waste from water teatement

Opportunity:

 Reduce footprint and storage costs of solid waste

• Constraints and challenges: New waste treatment method must be fit into existing liquid waste processing process

#### NRG PROJECT Filtration Sea Purified H<sub>2</sub>O Cleaned $H_2O$ Treatment $\leftarrow$ H<sub>2</sub>O Retentate tank Stock Filtration Test RO drum $H_2O$ Sludge $H_2O$ Sludge Test RO membrane Permeance RO Retentate 2% Centrifuge COVRA Dryer Permeance membrane

Fig. 1: flow diagram water treatement

Fig. 2: flow diagram test installation

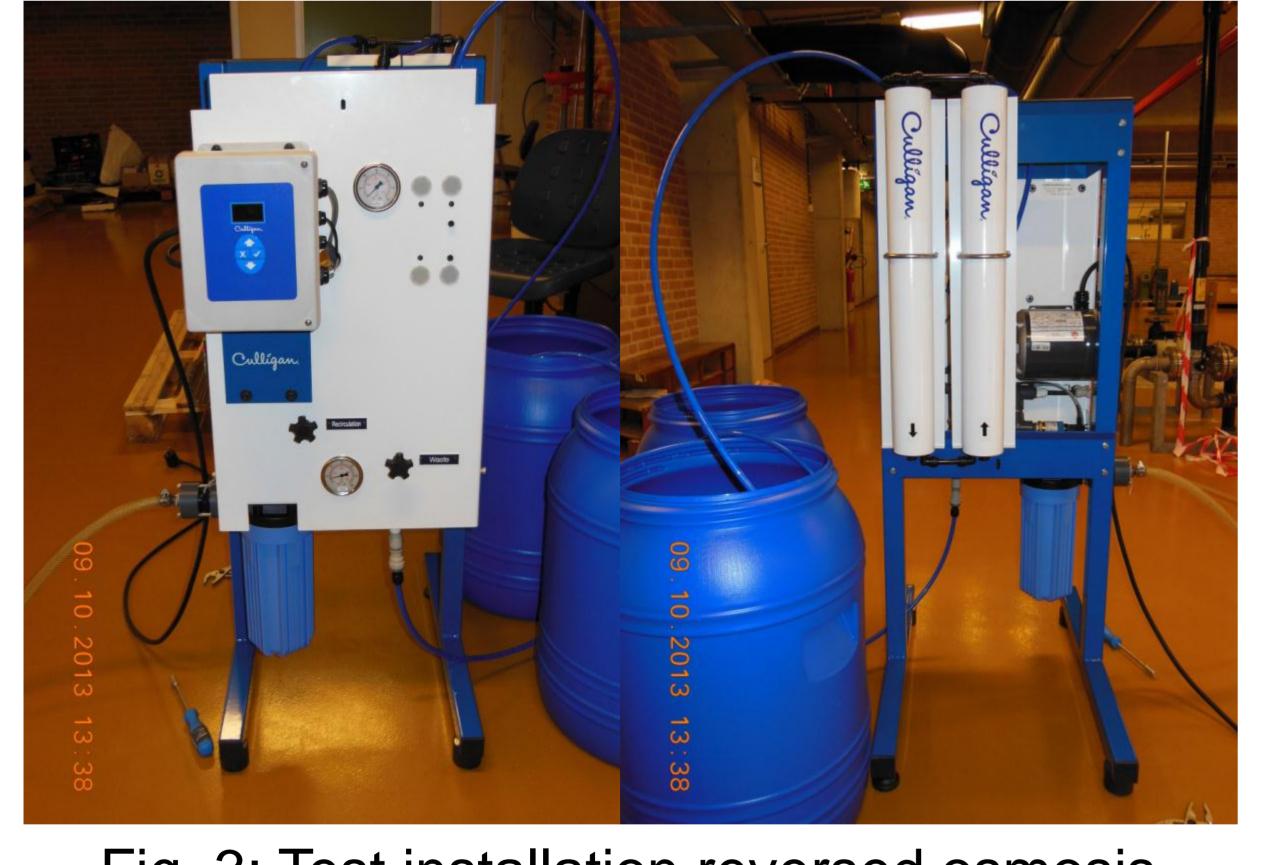



Fig. 3: Test installation reversed osmosis

#### **Tested waste water streams:**

- HFR pool water
- Waste water nuclear facilities
- Molybdenum production water
- Etching water
- Pipe cleaning water

## RESULTS AND WAY FURTHER

|         | HFR pool<br>H₂O     | Waste water<br>nuclear<br>facilities | Mo prod. H₂O           | Etching H₂O            | Pipe<br>cleaning H₂O   |
|---------|---------------------|--------------------------------------|------------------------|------------------------|------------------------|
| Element | Removal [%] with RO | Removal [%]<br>with RO               | Removal [%]<br>with RO | Removal [%]<br>with RO | Removal [%]<br>with RO |
| Р       | ***                 | ± 100                                | ± 100                  | ± 100                  | ± 100                  |
| Cr      | ***                 | ± 100                                | ± 100                  | ± 100                  | 91,7                   |
| Co      | ***                 | ***                                  | ± 100                  | ***                    | ± 100                  |
| Ni      | 48,7                | 96,6                                 | 98,6                   | 99,8                   | 97,5                   |
| Cu      | 1)                  | 45,2                                 | -49,1                  | 40,4                   | -40,1                  |
| Zn      | 34,8                | 88,9                                 | 81,1                   | 99,4                   | 69,6                   |
| As      | ± 100               | ± 100                                | 89,8                   | 89,3                   | 90,7                   |
| Cd      | ***                 | ***                                  | ***                    | 87,5                   | ± 100                  |
| Sn      | ***                 | ***                                  | ***                    | ± 100                  | ***                    |
| Hg      | ***                 | 32,0                                 | ± 100                  | ***                    | ***                    |
| Pb      | 49,1                | 98,3                                 | 35,8                   | 81,7                   | 98,2                   |
| N       | *                   | 93                                   | ± 100                  | *                      | *                      |
| O       | *                   | ± 100                                | 64                     | *                      | *                      |

\*\*\* Element not present in this type of water; 1) Cu contamination; ± 100 Amount smaller than detection limit; \* Not tested for this type of water

- ✓ The amount of flocculent that has to be used can be reduced up to 50%
- ✓ It becomes possible to re-use waste water in certain cleaning processes which was not possible before the use of RO
- ▼ The water which is released is much cleaner than without the use of RO

### **Way Further:**

Introduction of reversed osmosis installation in the waste water treatment process

