

Radiological Characterization of V1 NPP **Technological systems & Buildings - Activation**

Workshop on Radiological Characterisation for Decommissioning, 17 - 19 April, 2012, Studsvik, Sweden

Kristína Krištofová¹ Tibor Rapant 1 Jaroslav Svitek² 1 - AMEC Nuclear Slovakia s.r.o. 2 - JAVYS a.s.

kristina.kristofova@amec.com tibor.rapant@amec.com svitek.jaroslav@javys.sk

STM POWER

V1 NPP at Jaslovske Bohunice site

V1 NPP decommissioning:

- 2 WWER type reactor 440/230 units
- Operation: Unit 1 in 1978 2006, Unit 2 in 1980 2008,
- Since 2001 D&D preparation supported by Bohunice International Decommissioning Support Fund (BIDSF)
- At present: units finally shutdown, since July 2011 under decommissioning license

BIDSF Project B6.4 "Decommissioning Database"

Project purpose: Physical and radiological inventory database

development to support V1 NPP decommissioning

Performed by: EWN GmbH, STM Power and AMEC Nuclear Slovakia

Project period: 2008 – 2011

Project tasks:

1. DDB design

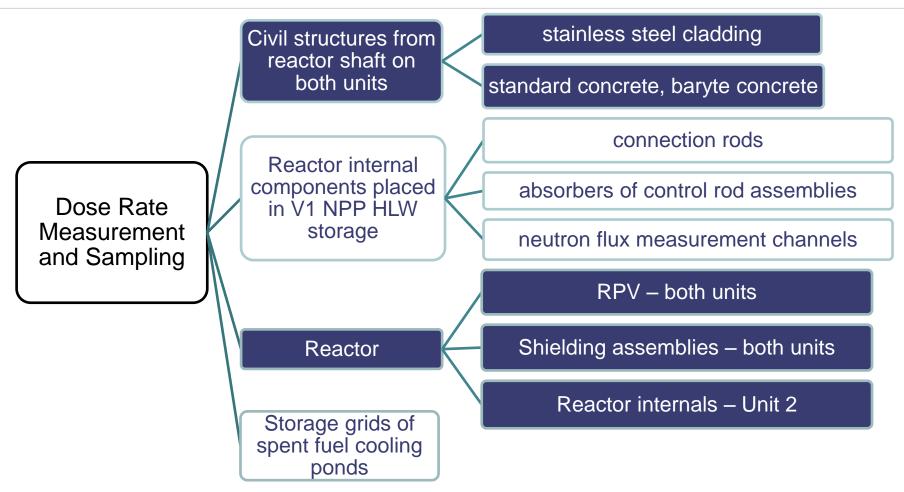
2. Historical site assessment

3. Physical inventory – plan and performance

4. Sampling and analysis - plan and performance

5. Hazardous material inventory

6. Activation inventory - Characterization of Activated Components Based on Measurement and Sampling


7. Radiological inventory

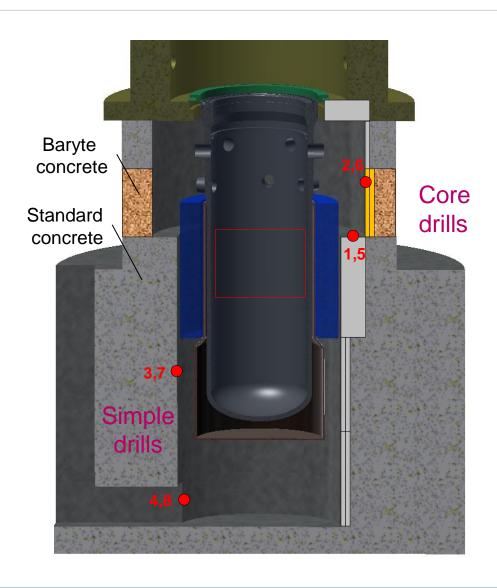
Scope of inventory:

Nearly 100 civil objects 175 technological systems Over 40 parameters for each DDB item identification, physical and radiological properties

Subject of Activation Inventory

Works carried out in period from 04/2011 to 12/2011

Radiological Characterization of Activated Components



Scope of services:

- 1. Categorization of activated components totally 112 samples planned
- 2. Development of single working programs for radiological monitoring and sampling
- 3. Preparation of sampling device & revision of NPP handling equipment
- 4. Dose rate monitoring and sampling
- 5. Analyses of samples: gammaspectrometry, radiochemical analyses; γ RA nuclides & limited RA nuclides for Mochovce repository
- 6. Determination of radiological inventory: activation values (Bq), RNV, dose rates
- 7. Import of radiological data for activated components into DDB

Sampling of activated civil structures in reactor concrete shaft of Unit 1 and 2

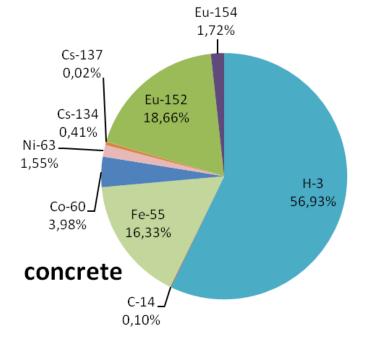
Number of drills: 8 (1- 4 at Unit1, 5-8 at Unit 2)

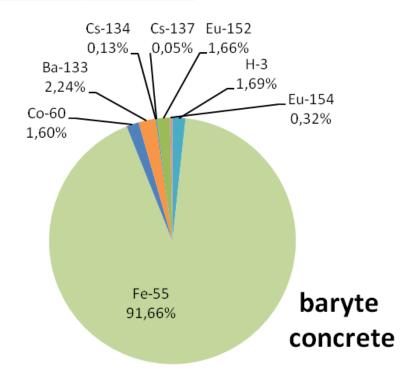
Sampling depth: 20 – 40 cm

Manual drilling device

Results:

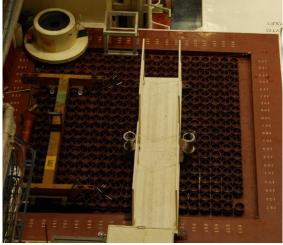
- major activation RA nuclides: Fe-55, H-3, Co-60, Eu-152, Eu-154, Cs-134, Ba-133, Ni-59, Ni-64, C-14
- •contamination of concrete by Cs-137
- Division of concrete to 9
 layers/ unit (along RPV concrete shaft height)




Sampling of activated concrete – results

V1 NPP concrete radiological inventory determined for 1.1.2010:

Material	Standard concrete	Baryte concrete	Total
Activity (Bq)	1,58E+09	6,41E+08	2,22E+09
Mass (kg)	344 166	86 490	430 656


RNV – activated concrete for Unit 1:

Sampling of activated components in V1 NPP HLW storage (1)

V1 NPP HLW storage (399 cells):

- ■157 absorbers of safety and control rod assemblies (ABS)
- ■217 connection rods of safety and control rod assemblies (CR)
- over 330 pc of neutron flux measurement channels (KNI)

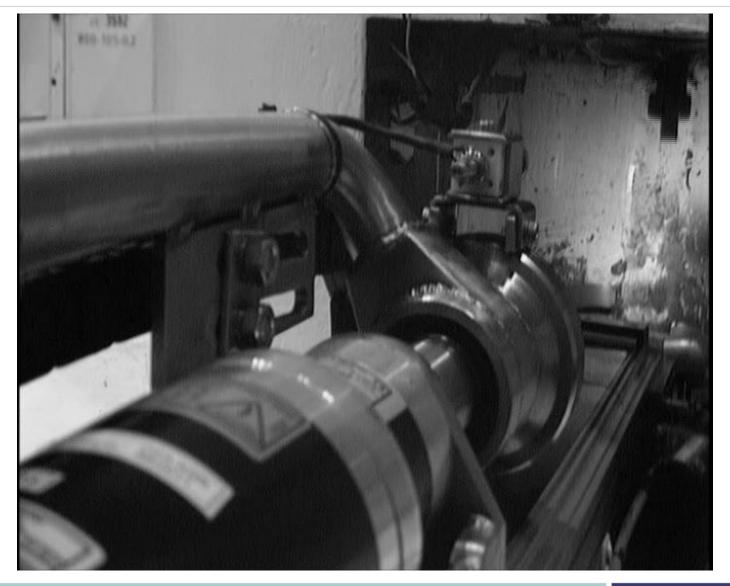
Procedure:

- 1.Categorization of stored components 40 components selected
- 2.Remotely controlled sampling equipment used
- 3.Existing NPP equipment for manipulation transport containers for components

Sampling of activated components in V1 NPP HLW storage (2)

Sampling procedure in HLW storage:

- Remote-controlled equipment with drilling head on linear guiway, sample suction into carrousel
- 80 samples taken from selected components (ABS, CR, KNI) – swarfs
- Sample mass from 0.6 mg to 900 mg
- Dose rate monitoring along the height of component – up to 30 Sv/h at sampling spot



Sampling of activated connection rod in V1 NPP HLW storage - video

Sampling of activated components in V1 NPP HLW storage – results (1)

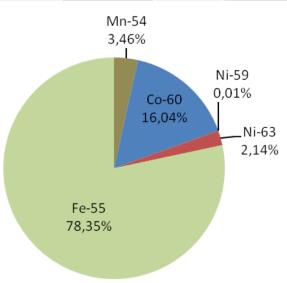
	Dose rate	Assignment of activated component part into category				
Category	interval [mSv/h]	CR A-type	CR B-type	Absorber	KNI channel	
MOG1	$10^3 - 10^2$	Bottom part 0 – 60 cm	-	Bottom part 0 – 60 cm	-	
MOG2	$10^2 - 10^1$	Part 60 – 120 cm from the bottom	Bottom part 0 – 60 cm	Part 60 – 120 cm from the bottom	Bottom part 0 – 250 cm	
MOG3	$10^{1} - 10^{-1}$	CR rest part (360 cm)	CR rest part (420 cm)	ABS rest part (140 cm)	KNI rest part (up to 350 cm)	

CR A-type: from group VI. of controlled rod assemblies – inserted partially in the core

CR B-type: CR from other groups of controlled rod assemblies – occasionally in the core

Absorber

KNI channel



Total inventory of CR, ABS and KNI channels placed in V1 NPP HLW storage on due date 1.8.2011:

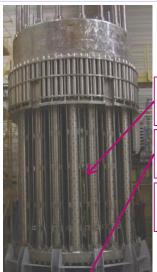
Material	Connection rods		Absorbers		KNI channels		Total	
Material	Activity [Bq]	Mass [kg]	Activity [Bq]	Mass [kg]	Activity [Bq]	Mass [kg]	Activity [Bq]	Mass [kg]
MOG1	1,07E+15		1,94E+15		-	-	3,01E+15	
MOG2	2,22E+14	1 526	3,65E+13	4 023	2,63E+14	495	5,21E+14	6 044
MOG3	8,36E+13	11 717	1,01E+13	10 637	2,63E+12	495	9,64E+13	22 849
TOTAL	1,38E+15	13 516	1,99E+15	18 683	2,66E+14	990	3,63E+15	33 189

RNV valid to date of component unloading from the core and putting to HLW storage

Sampling of reactor and its internals

Subject of sampling:

- 1. Internals of RPV, Unit 2:
 - Protective tube unit
 - Core basket
 - Reactor cavity
- 2. Selected shielding assemblies, both units


3.RPV:

- Basic material sampled from outer side in reactor shafts bottom part,
 Unit 1, 2
- Internal cladding of RPV, Unit 2
- ■In total **34 samples taken** swarf with mass from 0.1 mg to 125 mg
- ■Depth of sampling: 2 5 mm
- Remote controlled sampling equipment (the same for HLW storage sampling)
- Manual drilling with sample capture only in case of basic RPV material

Sampling of reactor internals, Unit 2

Protective tube unit

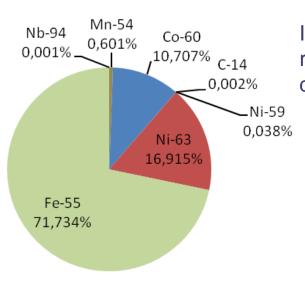
Core basket

Reactor cavity

- Container for transport of reactor internals
- Remote controlled sampling carried out on air in refuelling pond above the RPV
- •15 samples taken
- Dose rate at 50 cm distance:
 Protective tube unit: 0.44 110 mSv/h

Core basket: 2400 - 37000 mSv/h

Cavity: 0.5 – 4200 mSv/h


Sampling of reactor internals, unit 2– results

amec

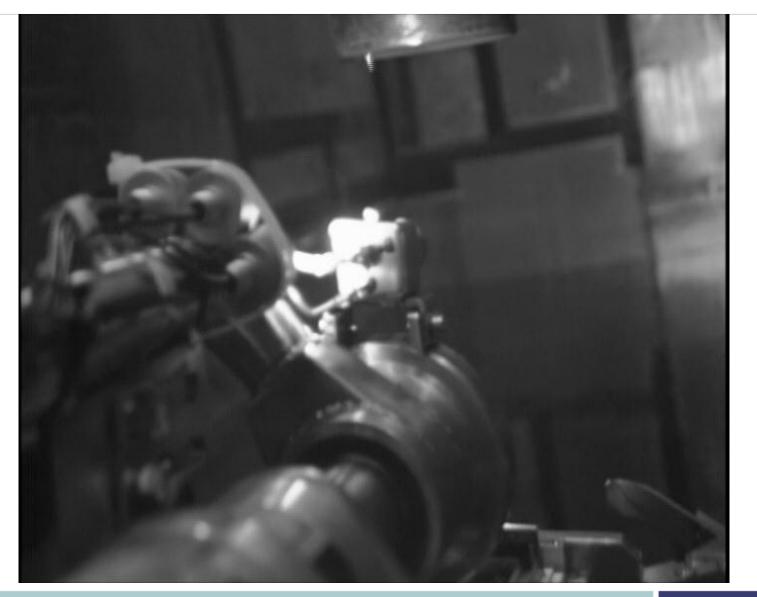
Total inventory of reactor internals determined on due date 30.9.2011:

Component	Parameter	Unit 1	Unit 2	Total
Protection tube unit	Activity [Bq]	5,69E+14	8,37E+14	1,41E+15
	Mass [kg]	27 304	27 304	54 608
Core basket	Activity [Bq]	5,84E+16	8,59E+16	1,44E+17
	Mass [kg]	22 480	22 480	44 960
Reactor cavity	Activity [Bq]	7,41E+15	1,09E+16	1,83E+16
	Mass [kg]	61 250	61 250	122 500

RNV Unit 2

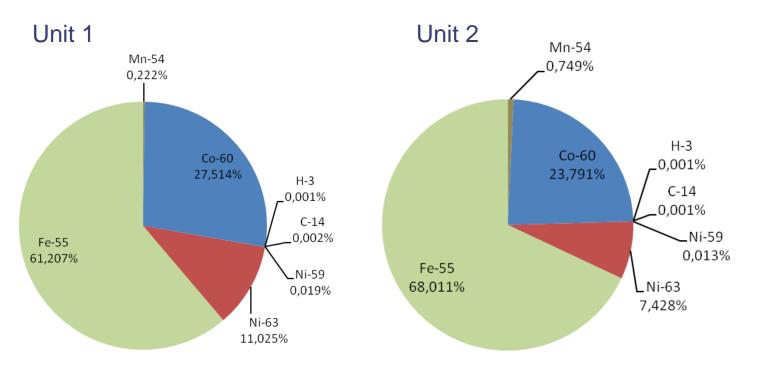
Inventory and RNV for Unit 1 recalculated considering different final shutdown

Sampling of shielding assemblies, both units (1)



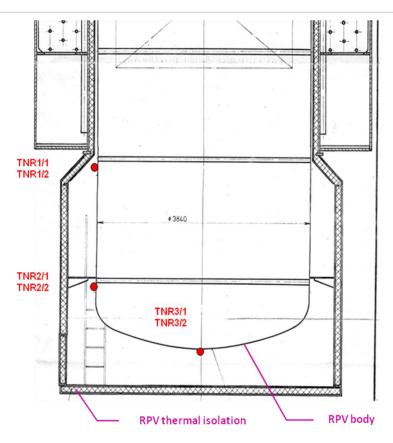
- •Shielding assemblies = 36 replaced fuel assemblies in peripheral core position reduced RA impact on RPV
- Refuelling machine for transport of shielding assemblies used
- Remote controlled sampling carried out on air in spent fuel storage pool
- Selected 3 assemblies/unit based on their position in the core
- 6 samples taken
- •Dose rate at 50 cm distance: 3.1 110 Sv/h
- •Confirmed measured dose rates carried in 2008, dose rate at 1cm distance: > 2000 Sv/h

Sampling of shielding assemblies - video



Sampling of shielding assemblies – results

Total inventory of shielding assemblies determined on due date 30.9.2011:


Component	Parameter	Unit 1	Unit 2	Total
Shielding	Activity [Bq]	4,63E+16	4,63E+16	9,27E+16
assemblies	Mass [kg]	10 800	10 800	21 600

EWN STM POWER

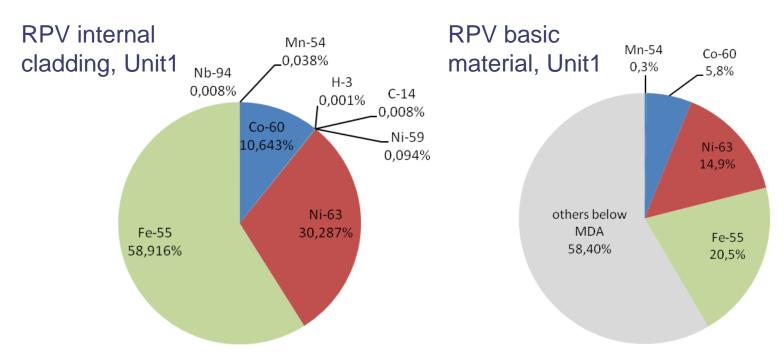
Sampling of RPV – basic material & cladding

Sampling of RPV basic material, both units:

- ■Manual drilling 6 taken samples
- ■Average dose rate: 100 300µSv/h

Sampling of RPV internal cladding, Unit 2:

- Concrete container inside RPV
- Remote controlled equipment –7 taken samples
- Dose rate at 50 cm: 1 1010 mSv/h

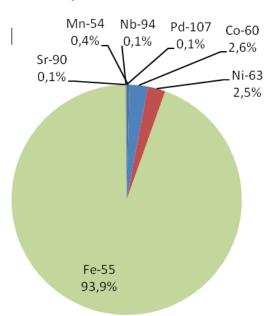


Sampling of RPV – results

amec

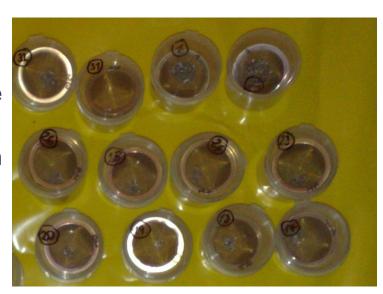
Total inventory of RPV material determined on due date 30.9.2011:

Component	Parameter	Unit 1	Unit 2	Total
RPV basic material	Activity [Bq]	3,36E+14	3,97E+14	7,33E+14
RPV basic material	Mass [kg]	247 800	247 800	495 600
RPV internal	Activity [Bq]	1,23E+14	1,76E+14	2,99E+14
cladding	Mass [kg]	17 300	17 300	34 600


Sampling of storage grids in spent fuel cooling pond, Unit 1

- Manual drilling with sample capture on air
- 3 taken samples
- Average dose rate: 350µSv/h

• RNV, Unit 1


Total inventory of storage grids determined on due date 30.9.2011:

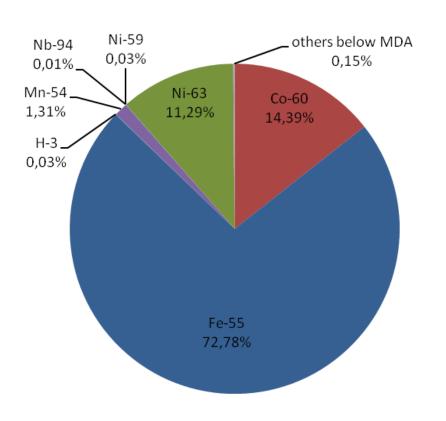
Component	Parameter	Unit 1	Unit 2	Total
Storage grids of spent	Activity [Bq]	4,61E+11	7,63E+11	1,22E+12
fuel cooling pond	Mass [kg]	4 700	4 700	9 400

Radiological Characterization of V1 NPP - Activation

- Same approach for all activated components:
 - Working program
 - Work implementation: dose rate measurements, sampling, analyses
 - Report evaluation of working program (including DVD)
 - **-** DDB import: **1130** modified or new items
- Total number of samples: 125
- Total inventory: 2,61E+17 Bq
- Analyses:
 - All samples gamma-spectrometry
 - 13 samples analysis of hard-to-detect radionuclides:
 C-14, Ca-41, Ni-59, Ni-63, Fe-55, Se-79, Sr-90, Mo-93, Zr-93, Nb-94, Tc-99, Pd-107, Sn-126, I-129, Cs-135, Sm-151, Pu-238, Pu-239+240, Am-241, Cm-244 (RA nuclides limited for RAW repository in Mochovce)

EWN STM POWER amec

Radiological inventory results – activation (1)


Final list of 19 RNV for activation:

- RPV cladding Unit1, Unit 2
- RPV basic material, water biological shielding Unit1, Unit 2
- RPV internals Unit1, Unit 2
- Shielding assemblies Unit1, Unit 2
- RPV Serpentinite Unit1, Unit 2
- RPV Thermal insulation Unit1, Unit 2
- Activated standard concrete Unit1, Unit 2
- Activated baryte concrete Unit1, Unit 2
- Grids of spent fuel storage pool, stainless steel cladding of reactor shaft
 Unit1, Unit 2
- High level waste storage (Mogilnik) control rods, absorbers, neutron flux measurement channels

Radiological inventory results – activation (2)

Percentage contribution of radionuclides to the NPP V-1 activation:

Other identified activation products:

Radionuclide	Contribution (%)
Ba-133	4,24E-09
Cs-134	4,23E-09
Eu-152	1,10E-07
Eu-154	1,08E-08

Thank you for your attention.

Any questions?

