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Chemically contaminated land 
 

In situ sampling mass < Ex situ sampling mass 
e.g. PXRF (~1g) compared with laboratory measurements (~1kg). 
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Chemically contaminated land 
 

In situ sampling mass < Ex situ sampling mass 
e.g. PXRF (~1g) compared with laboratory measurements (~1kg). 

 
 

Radioactively contaminated land: 
 

In situ sampling mass > Ex situ sampling mass 
Due to remote detection of penetrating radiation 

 

e.g. field gamma measurements (50 kg – >100 tonnes!) compared 
with laboratory measurements (~1kg). 
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Ex situ laboratory analysis: 
 - very expensive, up to £1000 / sample for alpha radiation. 
  → low-resolution mapping. 
  - considered best practice. 
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Ex situ laboratory analysis: 
 - very expensive, up to £1000 / sample for alpha radiation. 
  → low-resolution mapping. 
  - considered best practice. 
 

In situ techniques:  
 - much less expensive, e.g. £1.00 per m2. 
  → allows high resolution mapping. 
 - currently poorly quantified. 
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Ex situ laboratory analysis: 
 - very expensive, up to £1000 / sample for alpha radiation. 
  → low-resolution mapping. 
  - considered best practice. 
 

In situ techniques:  
 - much less expensive, e.g. £1.00 per m2. 
  → allows high resolution mapping. 
 - currently poorly quantified. 
 

Requirement to demonstrate the fitness-for-purpose of in situ 
measurement techniques. 
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Fitness-for-purpose (FFP) “the property of data produced by a measurement process that 
enables a user of the data to make technically correct decisions for a stated purpose.” 
(Thompson & Ramsey, 1995). 
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Many radionuclides emit alpha or gamma radiation at one or more characteristic 
energy levels (e.g. 137Cs daughter 137mBa at 661 keV). 

 

 

 

Peak at 661 keV 

indicates presence 

of Cs-137  

 

C
o

u
n

ts
 p

er
 s

e
co

n
d 

Energy (KeV) 

Counts collected across a 
spectrum of energy levels.  
 

Peak energy levels indicate 
existence of specific 
radionuclides.  
 

Peak area indicates intensity of radiation (counts per 
second, or CPS) received at detector. 
 
No direct info re: amount of material sampled or its 
activity level. Interpretation required to convert CPS to 
activity concentration. 
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Low activity particle 
close to detector 

High activity particle 
distant from detector 

Multiple low/medium 
activity particles 

Volume of diffuse 
activity 

In situ methods may not be able to determine which of the above applies. 
Different for ex situ, where a soil sample is excavated and analysed in lab. 

Example - Using a detector positioned above the ground surface, a gamma count 
of 100 CPS (detected decay photons) is recorded. This is used to estimate the 
activity of the source in Becquerels (Bq), based on the detector efficiency and 
emission probability) . 
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• Describe measurement methods carried out at the case-study site. 
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• Describe measurement methods carried out at the case-study site. 

 

• Provide estimates of the uncertainty in the measurements (MU) of  

  these techniques. 
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• Describe measurement methods carried out at the case-study site. 

 

• Provide estimates of the uncertainty in the measurements (MU) of these     

  techniques. 

 

• Comment on the relative effectiveness of these investigations for the  

  purposes of: 

- Estimating spatial distributions and mean activity concentration of   

  contamination over the survey area; 

- Identification of hotspots of activity. 
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• Describe measurement methods carried out at the case-study site. 

 

• Provide estimates of the uncertainty in the measurements (MU) of these     

  techniques. 

 

• Comment on the relative effectiveness of these investigations for the  

  purposes of: 

- Estimating spatial distributions and mean activity concentration of   

  contamination over the survey area; 

- Identification of hotspots of activity. 

 

• Introduce ongoing work being carried out by Sussex University in  

  conjunction with Dounreay Site Restoration Ltd,  with the general aim  

  of optimising in situ investigations of radioactively contaminated land  

  in order to achieve measurements which are Fit-for-Purpose (FFP). 
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Dounreay – the case study site 

Dounreay - Britain’s experimental fast 
breeder reactors. 
  
Reactors in operation from 1958-1994. 
Site now being decommissioned.  
 
Characterisation of land areas and 
concrete floors of buildings for 
radionuclide content.   
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Canberra NaI 3”x3” 
scintillation detector 
with 90 degree 
collimation. 

Type: In situ 
Height: ~250mm 
Count time: 10mins 
Sample mass: Up to 30 tonnes! 
Output: Activity concentration (Bq g-1) 

Hand-held Exploranium  
2”x2” NaI scintillation 
detector (un-collimated),  
placed on ground surface. 

Type In situ 
Height:  ~25mm 
Count time: 10mins 
Sample mass: ~ 3 tonnes. 
Output: Activity (CPS) 

Ex situ top-soil samples 
using bulb planter to 10cm 
depth. 

Type: Ex situ / Laboratory measurements 
Height: -10mm 
Count time: 12 hours in laboratory 
Sample mass: ~ 0.5kg 
Output: Activity concentration (Bq g-1)  

Groundhog vehicle. Wide 
array of gamma detectors. 
Permits 100% coverage. 

Type: In situ  
Height: ~250mm 
Count time: ~ 1 second 
Sample mass:  Greater than Canberra ? 
Output: Activity (CPS) 
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Survey Objectives  
 
1. Estimate uncertainty in the measurements of Cs-137 
contamination in soil, using the Canberra and Exploranium  in 
situ detectors and one ex situ method.  
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Survey Objectives  
 
1. Estimate uncertainty in the measurements of Cs-137 
contamination in soil, using the Canberra and Exploranium  in situ 
detectors and one ex situ method.  
 
2. Evaluate fitness-for-purpose of the 3 measurement sets for  
 

 a: The characterisation of the intensity of radioactive  
       contamination over an averaging area. 
 

 b: The identification of hotspots of radioactive activity. 
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MEASUREMENT UNCERTAINTY 

• ‘An estimate attached to a test result which characterises the 

range of values within which the true value is asserted to lie’       

(ISO, 1993) 
 

 

• Partially generated by measurement error from the 

sampling and sampling prep as well as the analytical 

process. 

 

• Sampling uncertainty arises due to the heterogeneous 

nature of the contaminant distribution in soil, and ambiguity 

in the sampling protocol. 
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Area: Rectangular 20m x 14m = 280m2 

Measurement spacing: 2m 

In situ detector 1: Canberra 3X3” NaI, 90⁰ 20mm lead collimator 

In situ detector 1 height: nominally 280mm 

Coverage: 6.2% 

In situ detector 2: Exploranium GR135 

In situ detector 2 height: 0mm 

In situ counting time: 600 seconds both detectors 

No. in situ measurement locations:  88 

No. in situ duplicate measurement locations: 9 

No. ex situ soil samples: 20 x 0-10cm, 8 x 10-20cm 

No. ex situ duplicate locations: 8 

Sample duplicate spacing: 20cm 

 
Area: Irregular 206m2 

Measurement spacing: 1.3m 

In situ detector: Canberra 3X3” NaI, 90⁰ 20mm lead collimator 

In situ detector height: nominally 920mm 

Coverage: 100% of ground covered 

In situ counting time: 600 seconds 

No. in situ measurement locations:  122 

No. in situ duplicate measurement locations: 12 

No. ex situ soil samples: 20 x 0-10cm, 20 x 10-20cm 

No. ex situ duplicate locations: 8 

Sample duplicate spacing: 13cm 
 

Zone 12 

Barrier 31 
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Canberra in situ spectra interpreted using  modelling software (ISOCS). 

Conversion from Bq to Bq g-1 using a 
cone-shaped modelled soil volume of 
10cm depth, defined by the 
theoretical field-of-view (FOV) of the 
90° collimator. Large (150%) bias 
compared to ex situ measurements. 
 

Changing the modelled soil volume to a 
disk shape larger than the FOV 
substantially reduced activity 
concentrations, suggesting some of the 
observed bias was caused by the model 
initially used. 
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Collimated 
detector 

20cm soil 
layer 

Field-of-
view 
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A 90 degree 20mm thickness lead collimator was used in the survey. 
 
Some additional gamma radiation from the soil volume around the detector 
passes through the collimator side walls. 

A 50mm lead 
collimator would 
weigh >70kg! 

This effect could be 
substantially reduced by 
using a 20mm tungsten 
collimator, or (best) a 
50mm lead collimator.   
 

FOV 

Collimated 
detector 

2.5 m 

Ground surface 

Soil volume from which  some 
additional radiation from sources 
outside the FOV, pass through the 
collimator walls and  increase 
measured activity, resulting in bias. 
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Additional sources 
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Increasing size of modelled soil volume reduces calculated activity concentration.  

Desk experiment to establish minimum model 
dimensions for soil volume. 
 

Based on 40K gamma emissions at 1461 KeV 
(high penetration). 

In situ relative bias reduced from +215% (using cone model) to +48% (25m dia disk 
model) for single highest 137Cs measurement based on 10cm thick soil layer. 
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Modelled soil volume dimensions were increased until calculated activity 
concentration stabilized  - at approximately 1m thickness and 25m diameter. 
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RESULTS 
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High uncertainty for all methods. Due to 
proximity to Detection Limit (MDA=0.026 Bq g-1)? 
 

Zone 12 Results – Random MU (137Cs) 

Mean Activity 

Expanded relative uncertainty (%)  

Usamp  Uanal  Umeas  

Canberra in situ  0.043 Bq g-1  0 43.9 43.9 

Exploranium in situ  365 CPS  34.5 31.8 46.9 

Ex situ 0-20cm  0.066 Bq g-1  43.6 18.7 47.4 

GROUNDHOG  137 CPS  N/A  12.4-18.7  12.4-18.7  

SEC  0.076 Bq g-1  N/A  53-303  53-303  
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High uncertainty for all methods. Due to proximity 
to Detection Limit (MDA=0.026 Bq g-1)? 
 
Dominated by sampling U for Exploranium & ex 
situ.  Due to small scale heterogeneity?  
 

Zone 12 Results – Random MU (137Cs) 

Mean Activity 

Expanded relative uncertainty (%)  

Usamp  Uanal  Umeas  

Canberra in situ  0.043 Bq g-1  0 43.9 43.9 

Exploranium in situ  365 CPS  34.5 31.8 46.9 

Ex situ 0-20cm  0.066 Bq g-1  43.6 18.7 47.4 

GROUNDHOG  137 CPS  N/A  12.4-18.7  12.4-18.7  

SEC  0.076 Bq g-1  N/A  53-303  53-303  
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High uncertainty for all methods. Due to proximity 
to Detection Limit (MDA=0.026 Bq g-1)? 
 
Dominated by sampling U for Exploranium & ex 
situ.  Due to small scale heterogeneity?  
 
Dominated by analytical U for Canberra. Due to 
averaging over large soil mass?  

Zone 12 Results – Random MU (137Cs) 

Mean Activity 

Expanded relative uncertainty (%)  

Usamp  Uanal  Umeas  

Canberra in situ  0.043 Bq g-1  0 43.9 43.9 

Exploranium in situ  365 CPS  34.5 31.8 46.9 

Ex situ 0-20cm  0.066 Bq g-1  43.6 18.7 47.4 

GROUNDHOG  137 CPS  N/A  12.4-18.7  12.4-18.7  

SEC  0.076 Bq g-1  N/A  53-303  53-303  
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Barrier 31 – Random MU (137Cs) 

 

Mean measurements one order magnitude > 

Zone 12, consequent reduction in analytical U 

for Canberra. 

 

 

Mean Activity 

Expanded relative uncertainty (%)  

Usamp  Uanal  Umeas  

Canberra in situ  0.51 Bq g-1 10.2 7.5 12.6 

Ex situ 0-20cm  0.60 Bq g-1 72.5 5.1 72.6 
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Barrier 31 – Random MU (137Cs) 

 

Mean measurements one order magnitude > 

Zone 12, consequent reduction in analytical U for 

Canberra. 

 

>Sampling U for Canberra and Ex situ – due 

to higher mean than Zone 12, also greater 

small-scale heterogeneity? 
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Barrier 31 – Random MU (137Cs) 

 

Mean measurements one order magnitude > 

Zone 12, consequent reduction in analytical U for 

Canberra. 

 

Sampling U for Canberra and Ex situ – due to 

higher mean than Zone 12, also greater small-

scale heterogeneity? 

 

In situ may be affected by shine from the 

nearby silo. 
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ZONE 12 - Non-significant correlation or bias 
between in situ Canberra measurements and 
ex situ measurements (p<0.05) when single 
outlier excluded (high MU?) 

Mann-Whitney - No significant differences Zone 12 or Barrier 31 (p<0.05) 
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Barrier 31 – Significant correlation but 
non-significant bias when single outlier 
excluded. 
 

(Bias: Slope = 1, intercept = 0) 
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Interpolated Groundhog CPS 
measurements of the survey area, 
showing 4 distinct “hotspots”.   

Canberra detector - Only one hotspot 
found with measurements significantly 
higher than the mean.   
 
Also the case for the Exploranium and ex 
situ measurements. Even with 2m grid 
spacing. 
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FFP criteria suggested by Ramsey et al 
(1992) 

 
 Smeas

2 < 20% Stotal
2 
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FFP criteria suggested by Ramsey et al (1992): Smeas
2 < 20% Stotal

2 
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Contribution to total variance (%) 
Measurement U 

(%) 
Zone 12 Canberra in situ 92.5 

Exploranium in situ 82.7 
Ex situ 0-20cm 51.8 

Barrier 31 Canberra in situ 0.8 
Ex situ 0-20cm 33.4 
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FFP criteria suggested by Ramsey et al (1992): Smeas
2 < 20% Stotal

2 
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Contribution to total variance (%) 

Measurement U 

(%) 
Zone 12 Canberra in situ 92.5 

Exploranium in situ 82.7 
Ex situ 0-20cm 51.8 

Barrier 31 Canberra in situ 0.8 
Ex situ 0-20cm 33.4 

Only Canberra in situ FFP and only in Barrier 31 
 - Low levels of analytes (Zone 12). 
 - Insufficient counting times (Zone 12). 
 - High levels small-scale heterogeneity (Barrier 31). 
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Hotspot identification: Only 1 located 
out of 4 previously found by 
Groundhog survey. 
Neither in situ nor ex situ 
measurements are FFP in Zone 12. 
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 -Limited coverage by in situ methods. 
 -Small sample size ex situ (~0.5kg). 
 -Low activity concentrations 137Cs. 
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• Basis of a decision support tool for optimising in situ survey 

methods. 

 

• Based on probability of identifying a small particle using in situ 

measurements. 

 

• Optimisation parameters:  

- Detector height 

- Counting time 

- Coverage% (assumed to be  minimum of 100%). 

 

• Introduces financial considerations (Ramsey et al, 2002). 

 

• Does require estimation of background activity levels (mean and 

standard deviation) for target radionuclide. 
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Increasing detector height 

increases the amount of 

ground covered by the 

collimator’s field-of-view. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Detector 

FOV 

Collimated 

detector 

Detector 

FOV 

Collimated 

detector 

Increasing the counting time increases the probability of particle 

detection. 



 
Circular FOV of 

detector 

Coverage square = 

maximum coverage 

per measurement 

to achieve 100% 

coverage over site 
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In situ measurement spacing (d) required to give 100% 

coverage of the ground surface by the collimator’s 

 field-of-view (FOV), when using a regular square grid design. 

d 

d 
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Detector 

FOV 

Collimated 

detector 

Particle A Particle B 

Particle A results in more counts at the detector than Particle B.  

 

Consequently a shorter counting time is required to detect particle A 

with specified probability. 

 

May be advantage to increasing coverage to > 100%, to optimise the 

balance between number of measurements and counting time. 



Optimised survey parameters 

Detector height 600 mm 

    

Measurement spacing 764 mm 

    

Counting time 707 Seconds 

      

Critical level 5044 Counts 

Optimised survey information 

Total survey time 98.76 Hours 

Coverage 123 % 

Number of measurements 353 (N) 

Measurement cost 3782 £ 

Expectation of Loss 3885 £ 

P(false +ve), adjusted 0.0100   

P(false -ve), adjusted 0.000001   

16.5 Six hour days 
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Site area (m2) 206 

Particle threshold (Bq) 10000 

Detector Height Range 

Single or Min mm 300 

Max mm (if range) 1200 

Step mm (if range) 100 

Cost Parameters 

Cost Type Per £ 

Measurement Site (e.g. MOB) 423.54 

  Measurement 4.68 

  Minute 0.41 

False +ve Square metre 50 

  Site   

Probability ranges / measurement 

  Single or 
Start  

Max (if 
range) 

Step (if 
range)   

False +ve 0.01 0.1 0.02 

False -ve 1E-06     

INPUTS (based on Barrier 31 survey) 

OUTPUTS 
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Histograms of simulated background and total counts 

LC=5044

Background

Total
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IN SITU SURVEY OPTIMISATION TOOL - SIMULATION 

Program Sim 

CPS B 4668.874 4669.534 

SD B 165.1408 164.8433 

CPS T 5906.825 5906.48 

SD T 185.7485 183.4508 

LC 5044.206 <<<<<<<< 

P(Fp) 0.0115 0.0115 

Studsvik 2012 

B = Background 

(blue curve) 

 

T = Background 

+ Particle (red 

curve) 
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IN SITU SURVEY OPTIMISATION TOOL – TIME BASED 

Optimised survey parameters 

Detector height 500 mm 

    

Measurement spacing 707 mm 

    

Counting time 403 Seconds 

      

Critical level 2803 Counts 

Optimisation on time taken to complete survey: 3 days shorter, 

but increased estimated cost (by ~£500) 

Optimised survey information 

Total survey time 80.41 Hours 

Coverage 100 % 

Number of measurements 412 (N) 

Measurement cost 3485 £ 

Expectation of Loss 4412 £ 

P(false +ve), adjusted 0.0900   

P(false -ve), adjusted 0.000001   

13.4 Six hour days 
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IN SITU SURVEY OPTIMISATION TOOL 
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1. Precision estimates – Ex situ >> sampling uncertainty than in situ. 
 Probably due to a smaller effective sample mass (~1kg / several tonnes). 
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2. No significant bias was found between in situ  and ex situ  measurements for either survey 
(after ISOCS model adjusted). However  Zone 12 measurements  were subject to high 
random uncertainty and would not be considered FFP according to criteria of Ramsey et al 
(1992). Probably due to proximity of measurements to MDA (these activities were well 
below anything of regulatory concern). 
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(after ISOCS model adjusted). However  Zone 12 measurements  were subject to high random 
uncertainty and would not be considered FFP according to criteria of Ramsey et al (1992). 
Probably due to proximity of measurements to MDA (these activities were well below 
anything of regulatory concern). 
 

3. Barrier 31 survey: Canberra in situ measurements are FFP according to these criteria and show 
good correlation with ex situ. 
 

4. Activity “hotspots” in the survey areas were relatively small in extent (~0.5m). 
 3 out of 4 previously identified were missed by both in situ detectors & ex situ (methods 

equally biased). Probably due to small hotspot size & poor coverage by all three survey 
methods, compared with Groundhog. 

 

5.  At least 100% coverage by FOV of collimated in situ detector may be required to identify 
small hotspots of activity. Greater than 100% coverage may be optimal  where it is required 
to find small particles with defined probability. 
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Units = Bq (counts per second) or Bq/g (activity concentration) 
 
Exploranium detector Cs-137 counts (Bq) estimated from recorded 
spectra. Not converted to activity concentration. 
 
Canberra detector Cs-137 activity concentration (Bq/g)  subsequently 
estimated by spectral analysis  using Genie 2000 modelling software. 
 
Soil samples analysed by on-site laboratory. Activity concentration  
(Bq/g) estimates provided. 
 
Duplicate samples/analysis collected for all methods at eight or more 
locations for uncertainty estimation, using the balanced design method 
recommended by Eurachem/CITAC . 
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