

Regulatory Aspects of Clearance and Recycling of Metallic Material forming Part of Buildings of Nuclear Facilities in Germany

S. Thierfeldt, S. Wörlen, P. Harding Brenk Systemplanung GmbH, Aachen (Germany)

- Metallic materials as parts of buildings
- Problem / Objective
 - how to perform clearance of these metals without removing them from the building structure
- Clearance regulations in Germany
 - clearance of metals (unconditional and for melting)
 - clearance of buildings
 - comparison
- Strategy for successful clearance of metals as parts of buildings
- Conclusions

Material

- Metallic materials as part of buildings of nuclear installations:
 - reinforcement in concrete
 - anchor slabs
 - pipework buried in concrete
 - steel liners in rooms and in water basins
 - anchor rails that are welded to the reinforcement steel
- These materials
 - remain in the building until the clearance process
 - require special considerations during decommissioning

Objective

• Release as much of this material as possible for recycling

- by melting in conventional foundries or
- by melting in a controlled recycling plant for reuse in the nuclear field
- Use only one type of clearance procedure
 - no distinction between
 - clearance process for building surfaces and
 - clearance process for metals on these surfaces
 - this approach saves considerable effort
- This approach is limited to contamination on metal
 activation requires separate consideration

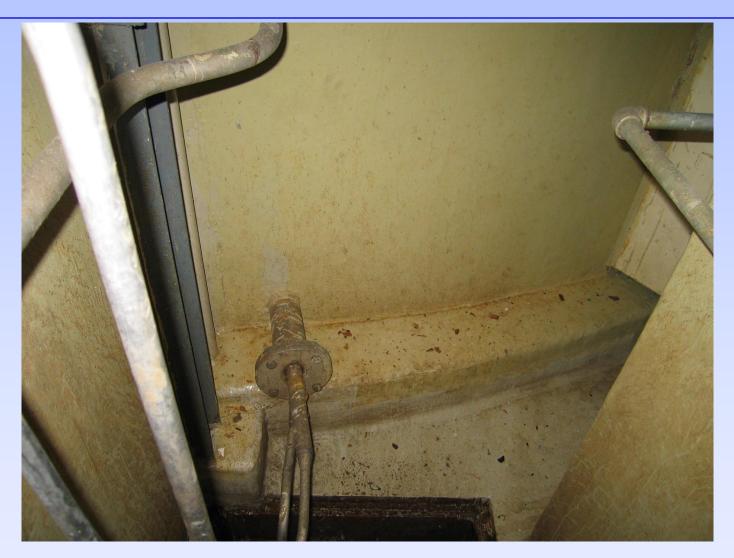
Problem

• Problem:

- on the one hand these metallic materials cannot/shall not be removed from the buildings prior to their demolition
- on the other hand they can only be fully characterised when being removed
- Competent authority has to grant clearance of materials
 - that may not be fully characterised by measurements,
 - but for which a significant part of the information required for clearance is inferred
 - from the operational history
 - from conclusions by analogy
 - from other sources

EXAMPLES

Example: Reinforcement Steel in Concrete



Example: Steel Liners on Concrete Surfaces

Example: Pipes embedded in Concrete

Example: Halfen Rails / Anchor Rails

Anchor rails

- steel profiles that are tightly fixed to the reinforcement steel
- embedded in concrete
- usually flush with the building surface

CLEARANCE REGULATIONS IN GERMANY

Relevant Parts of the German Clearance Regulations (1)

- Clearance in Radiation Protection Ordinance (*Strahlenschutzverordnung*)
 - general requirements: section 29
 - clearance levels (values): Annex III
 - further requirements: Annex IV
- Clearance levels are laid down in large table in Annex III for each clearance option
 - nuclide specific
 - contains CL values for ~300 nuclides

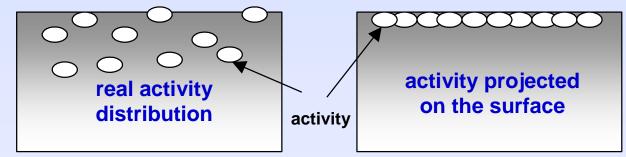
Relevant Parts of the German Clearance Regulations (2)

- Options for unconditional clearance:
 - of materials for reuse, recycling or disposal including building rubble of less than 1000 Mg/a
 - of building rubble and soil of more than 1000 Mg/a
 - of nuclear sites
 - of buildings for reuse or demolition
- Options for clearance for a specific purpose:
 - of solid materials with up to 100 Mg/a and up to 1,000 Mg/a for disposal on landfills
 - of (solid and liquid) materials with up to 100 Mg/a and up to 1,000 Mg/a for disposal by incineration
 - of buildings for demolition
 - of metal scrap for melting

Relevant Parts of the German Clearance Regulations (3)

			Freigabe																
	()	Radionuklid	Freigrenze			uneingeschränkte Freigabe von					Freigabe von					Halbwertszeit			
	: 1 RPO rance levels		Aktivität in Bq	spezifische Aktivität in Bq/g	Aktivität HRQ/1/ 100 A ₁ in Bq	Ober- flächen- konta- mination in Bq/cm ²	festen und flüssigen Stoffen in Bq/g	Bauschutt, Bodenaus- hub von mehr als 1 000 t/a in Bq/g	Boden- flächen in Bq/g	Gebäuden zur Wieder-, Weiterver- wendung in Bq/cm ²	festen Stoffen bis zu 100 t/a zur Beseiti- gung auf Deponien in Bq/g	festen und flüssigen Stoffen bis zu 100 t/a zur Beseiti- gung in Verbren- nungsanl. in Bq/g	festen Stoffen bis zu 1 000 t/a zur Beseiti- gung auf Deponien in Bq/g	festen und flüssigen Stoffen bis zu 1 000 t/a zur Beseiti- gung in Verbren- nungsanl. in Bq/g	Gebäuden zum Abriss in Bq/cm ²	Metall- schrott zur Rezyklie- rung in Bq/g			
	<u>a</u>	1	2	3	3a	4	5	6	7	8	9a	9b	9c	9d	10	10a	11		
	nnex III Table ues and clear	Fe-52	1 E+6	1 E+1	3 E+9	1 E+2	1 E+1	7 E-2		1					2 E+3	1 E+1	8,3	h	
	<u>ר</u> מ'	Fe-55	1 E+6	1 E+4	4 E+11	1 E+2	2 E+2	2 E+2	6	1 E+3	1 E+4	1 E+4	7 E+3	1 E+4	2 E+4	1 E+4	2,7	а	
		Fe-59	1 E+6	1 E+1	9 E+9	1	1	2 E-1	6 E-2	1	1 E+1	1 E+1	4	4	3 E+1	1 E+1	45,1	d	
1		Fe-60+	1 E+5	1 E+2													1,0 E+5	а	
1	ar	Co-55	1 E+6	1 E+1	5 E+9	1	1 E+1	1 E-1		1					1 E+3	1 E+1	17,5	h	
	X	Co-56	1 E+5	1 E+1		1	2 E-1	6 E-2	2 E-2	1	4	5	1	1	6	0,4	78,8	d	
	es es	Co-57	1 E+6	1 E+2	1 E+11	1 E+1	2 E+1	3	8 E-1	1 E+1	1 E+2	1 E+2	5 E+1	5 E+1	1 E+2	2 E+1	271,3	d	
	an	Co-58	1 E+6	1 E+1	1 E+10	1	9 E-1	2 E-1	8 E-2	1	1 E+1	1 E+1	5	5	3 E+1	1	70,8	d	
-60	1 E+5	1 E+1	4 E+9	1 =+4	1 = 11	E-1	9 E-2	3 E-2	4 E		6	7	2	:	2	3	0,6	5,3	3
		Co-60m	1 E+6	1 E+3		1 E+2	1 E+3	6 E+1		1 E+3					7 E+7	1 E+3	10,5	m	
		Co-61	1 E+6	1 E+2		1 E+1	1 E+2	4		1 E+1					5 E+5	1 E+2	1,7	h	
	20	Co-62m	1 E+5	1 E+1		1	1 E+1	8 E-2		1					7 E+4	1 E+1	14,0	m	
	Ċ.	Ni-56	1 E+6	1 E+1													6,1	d	
	bd	Ni-57	1 E+6	1 E+1													3,6 E+1	h	
	Чă	Ni-59	1 E+8	1 E+4		1 E+2	3 E+2 ¹⁾	3 E+2	8	1 E+3	3 E+3	1 E+4	3 E+2	3 E+3	9 E+4	1 E+4	7,5 E+4	а	
	e tr	Ni-63	1 E+8	1 E+5	4 E+11	1 E+2	3 E+2	3 E+2	3	1 E+3	1 E+4	6 E+4	1 E+3	6 E+3	4 E+4	1 E+4	100,0	а	
	extract from Exemption	Ni-65	1 E+6	1 E+1	4 E+9	1 E+1	1 E+1	4 E-1		1 E+1					3 E+4	1 E+1	2,5	h	
	Ш	Ni-66	1 E+7	1 E+4													54,6	h	
		Cu-60	1 E+5	1 E+1													23,0	m	
		Cu-61	1 E+6	1 E+1													3,4	h	

Clearance Regulations in Germany The Issue with Metals as part of Buildings


- Question:
 - What is the problem of clearing metals as part of buildings?
- Answer:
 - The differences in the CL values and the differences in requirements for clearance of buildings and of metals!
- Question:
 - Why should one try to clear metals in the same way as buildings?
- Answer:
 - Because it is much easier to use just one measurement device and clearance method and to treat the metals as part of the building

Clearance Regulations in Germany Buildings (1)

- Clearance options for buildings:
 - for reuse (or dismantling) unconditional clearance option
 - for dismantling only no reuse between clearance measurements and dismantling (standard case for NPP)
- Clearance levels:
 - based on EU RP 113/114
 - higher values for clearance for dismantling only apply
 - expressed as values in Bq/cm²
 - activity penetrated into the volume is projected onto the

surface

Clearance Regulations in Germany Buildings (2)

- Averaging area for buildings:
 - 1 m² for buildings for reuse (unconditional option)
 - = > 1 m² (often 10 m²) for buildings for demolition
- Measurements
 - usually carried out with (collimated) in situ gamma spectrometry or contamination monitors
 - takes into account penetration depth of contamination into the surface

Clearance Regulations in Germany Metals

- Clearance options for metals:
 - unconditional clearance reuse, recycling (and disposal)
 - for recycling by melting only metal must not be reused before recycling
- Clearance levels:
 - unconditional: general CL of Germany
 - for melting: based on EU RP 89/101/117
 - expressed as values in Bq/g (additional surface related values apply for unconditional clearance)
- Averaging criteria:
 - 1,000 cm² for surface contamination values
 - several 100 kg for mass related CL

Clearance Regulations in Germany "Buildings vs. Metals"

- How to compare clearance regulations for buildings and metals?
 - different types of CL: Bq/cm² vs. Bq/g
 - different values of CL: the CL for buildings cannot be converted by a standard factor into CL for metals
 - reason: different scenarios
 - different averaging criteria:
 - ~10 m² for buildings vs. 0.1 m² for metals (surface)
 - several 100 kg for metals (bulk)
- Solution:
 - show that application of CL for buildings also for metals in buildings will not lead to violation of 10 µSv/a dose criterion

STRATEGY FOR CLEARANCE OF METALS AS PART OF BUILDINGS

Clearance of Metals as Part of Buildings What can happen to the Metal?

- When metal is cleared together with the building, it will be dismantled together with the building structure
- Dismantling will destroy the metal structure and render it unsuitable for direct reuse
 - metal has to be brought to recycling by melting

Clearance of Metals as Part of Buildings Relation of both Sets of CL (1)

- Assumption:
 - contamination on metal surface equals CL for buildings (expressed in Bq/cm²)
- What is the mass related activity of the metal (Bq/g)?
 - depends on thickness! (ρ = 7.8 g/cm³)

	CL	for	Activity in [Bq/g] for a thickness of								
Nuclide	buildings, demol. [Bq/cm²]	metals, recycl. [Bq/g]	0.5 cm	0.7 cm	1 cm	1.4 cm	2 cm	3 cm			
Co-60	3	0,6	0,77	0.55	0.38	0.27	0.19	0.13			
Cs-137+	10	0,6	2.56	1.83	1.28	0.92	0.64	0.43			
Sr-90+	30	9	7.69	5.49	3.85	2.75	1.92	1.28			

Clearance of Metals as Part of Buildings Relation of both Sets of CL (2)

- Result of comparison:
 - If the nuclide vector is rich in Co-60 and thickness of the metal ≥ 7 mm:
 - \rightarrow even if CL for buildings (3 Bq/cm² for Co-60) is fully exhausted, the CL for metals are complied with
- But what if the metal
 - is thinner than 7 mm or
 - has a nuclide vector rich in Cs-137+?
 - \rightarrow then a more detailed line of argument is required!

Clearance of Metals as Part of Buildings Relation of both Sets of CL (3)

- 1) What is the total activity on metals remaining in the building of an NPP?
 - assume overall area covered with metal structures in an NPP building to be cleared as around 1,000 m²
 - assume that CL for buildings are fully exhausted and that the nuclide vector is rich in Cs-137+ (unfavourable case)
 - total activity around 70 MBq
 - total mass around 78 Mg (1 cm thickness, ρ = 7.8 g/cm³)

2) Real activity will be much smaller than 70 MBq

- calibration of the measurement instruments
- nuclide vector uses conservative activity composition (overestimation of real activity)
- clearance measurements will never exhaust CL by 100 %

Clearance of Metals as Part of Buildings Relation of both Sets of CL (4)

 Real activity on metal surfaces will correspond to about 0.4 Bq/g (related to nuclide vector rich in Cs-137+)

this is less than the corresponding CL of about 0.6 Bq/g

4) This activity is compatible with the scenarios that have led to the CL for metals for recycling by melting

dose criterion 10 µSv/a will be complied with

Clearance of Metals as Part of Buildings Averaging Criteria for Metals

5) Averaging criteria for metals are also complied with:

- example:
 - averaging area 10 m² on building surfaces
 - thickness of wall cladding 0.5 cm
 - one measurement covers 390 kg of metal
 - compatible with assumptions in RP 89

Thickness [cm]	Area [m ²]	Mass [kg]
0.5	10	390
1	10	780
1	5	390
3	5	1,170
5	1	390
10	1	780

 surface related CL play no role for clearance of metal scrap for recycling

Clearance of Metals as Part of Buildings Metal inside Building Structures

- What about cross contamination (dust) of metallic structures inside building structures during demolition?
- When building rubble is crushed, reinforecement steel is removed
 - possible cross-contamination from residual activity in dust
- Question: Is this a relevant pathway?
- Answer: No! Assume dust layer of 0.01 cm on steel rod of r = 0.5 cm:

$$f = \frac{2\pi \, r \, l \, d \, \rho_{dust}}{\pi r^2 \, l \, \rho_{iron}} = \frac{2\pi \cdot 0.5 \cdot 0.01 \cdot 2.3}{\pi \cdot 0.5^2 \cdot 7.8} \approx 1\%$$

mass related activity of metal will be less than 1 % of residual activity in rubble

CONCLUSIONS

- Clearance of metals as part of buildings
 - significantly simplifies overall clearance procedure
 - no separate procedure for all metallic parts
 - allows continuation of measurements on building surfaces also on metallic objects with same device and same CL
- Radiological evaluation shows that
 - compliance with clearance requirements for buildings (CL, averaging area) will also guarantee compliance
 - with clearance requirements for metal scrap for melting
- Metallic material (scrap) is separated during (conventional) dismantling of the building
 - will automatically be brought to recycling by melting as it is no longer fit for reuse