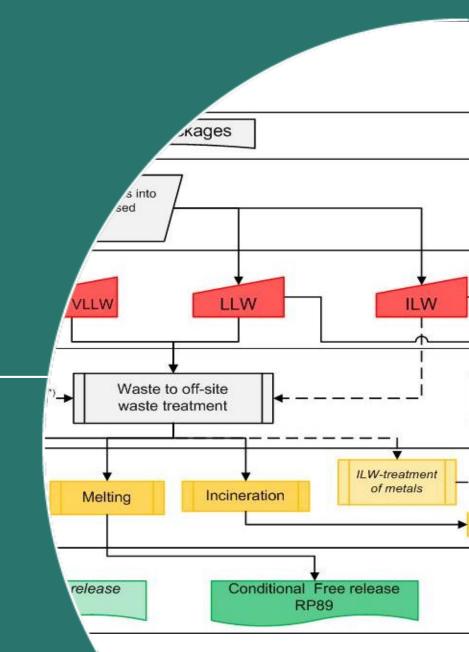


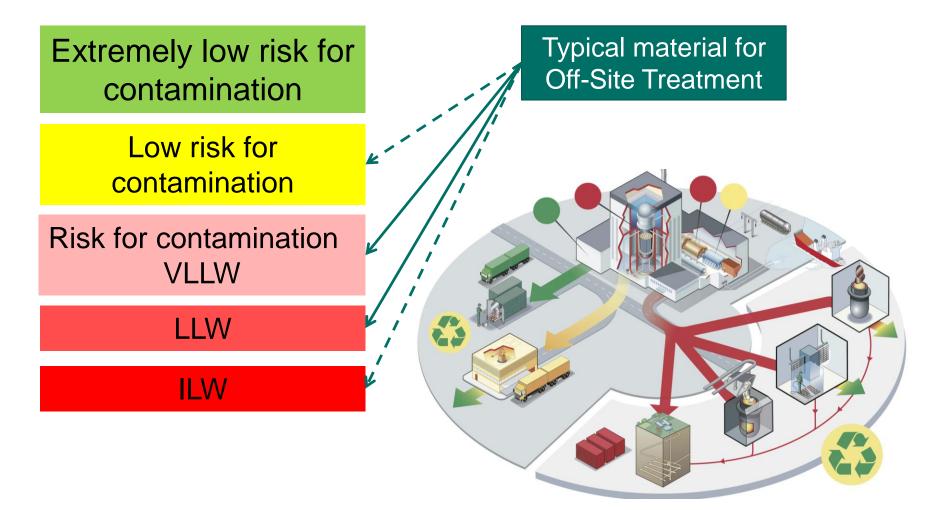
Impact of metals recycling on a Swedish BWR decommissioning project

Metals Recycling Symposium 2014 Studsvik, Nyköping, Sweden

Arne Larsson and Per Lidar, Studsvik Gunnar Hedin and Niklas Bergh, Westinghouse

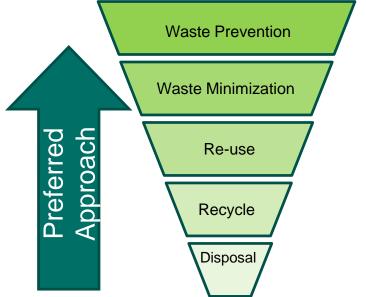


Agenda

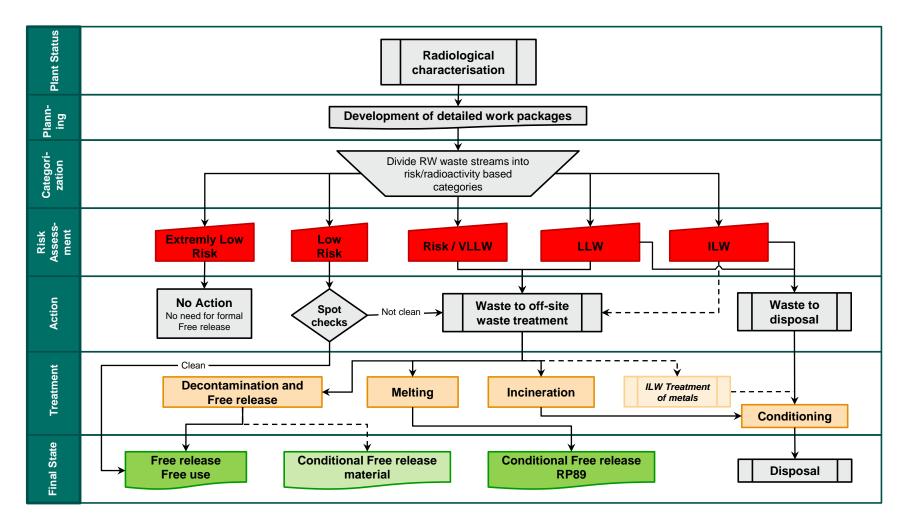

- Important aspects in decommissioning waste management
- Study on BWR decommissioning object
- References
- Conclusions

Important aspects in decommissiong waste management

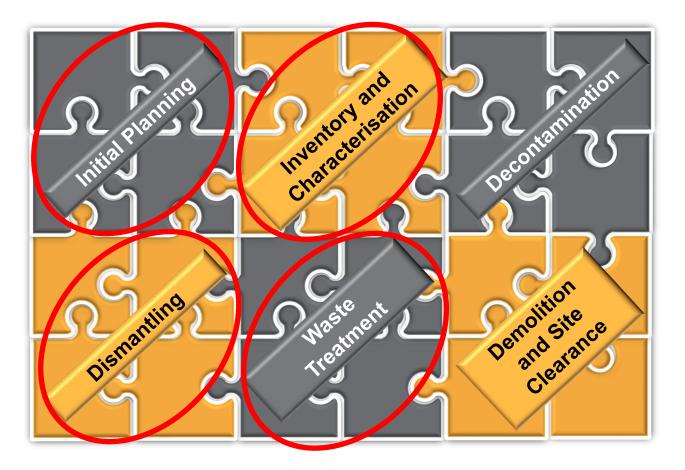
D&D Waste Stream Overview



Environmentally Sound Decommissioning


Implement the Waste Hierarchy

- Prevent generation of waste and especially radioactive waste
- Minimize waste volumes for final disposal
- Focus on recycling of materials
- Traceability, efficient logistics, established waste routes and sustainable processes are key success factors



ndcon Waste Management Concept

D&D minimisation of disposal volumes

Reduction of disposal volumes reduces total D&D cost

Planning Phase

- Define waste management strategy
 - On site clearance activities
 - Off-site treatment and clearance
 - Waste for direct disposal
- Secure competence and understanding
- Secure waste routes reserve capacity
- Define/refine dismantling sequence
- Consider recycling in licensing process
- Identify risks and bottle necks

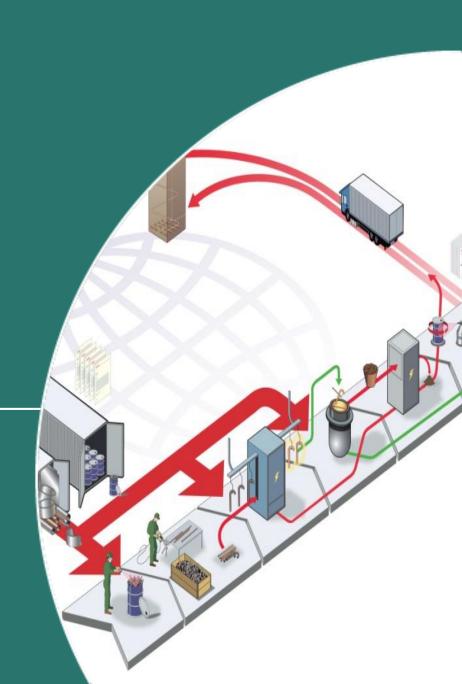
The importance of the planning phase can not be overestimated!

Dismantling

- Keep categories apart
 - Non-radioactive (extremely low risk)
 - Low risk
 - Risk/VLLW/LLW
- Secure traceability and documentation
- Consider waste handling prior to and in all dismantling activities

Waste led dismantling reduces total decommissioning cost!

Waste Treatment



- Ship large contaminated components off-site early
- Focus on-site waste management on material categorized as
 - Extremely low risk
 - Low risk
- Minimise efforts for off-site treatment materials
- Traceability and documentation

Analyse and follow bottle necks closely – do not wait with actions

Study on BWR decommissioning object

Considered waste strategy for the study

- Use risk-based waste management
- Link characterisation categorization waste management
 = > cost-effective clearance/waste conditioning
- Seek harmony with the waste hierarchy (i.e. focus on reuse and recycling)
- Combine on-site and off-site treatment
- Advanced decontamination and clearance processes on site require substantial investment on the decommissioning site
- Focus on reaching an end-state for the material as early as possible – waiting is never cheaper

Exits for radioactive waste

- Clearance for free use
- Conditional clearance
 - Conditional use/recycling/conventional disposal based on 10 µSv principle (special license)
 - Ingots from melting (EC RP89, special license)
- Final disposal as radioactive waste
 - SFR (radioactive waste, mainly short lived nuclides)
 - SFL (radioactive waste, long lived nuclides)
 - Land fill (if necessary, if possible)

Transport Concepts

Transport types:

- Containerized
- Large components

Shipments of radioactive waste are routine operations performed daily

Waste streams

Total amount VLLW/LLW to disposal not considering recycling approx. 18 000 ton (TLG-study)

Assumptions:

- Decont (as necessary) and clearance 30% (5400 ton)
 Off site metal treatment 38% (6800 ton)
- Incineration
- Material for direct disposal

30% (5400 ton)
38% (6800 ton)
2% (400 ton)
30% (5400 ton)

Impact by implementation of waste hierarchy

Waste for disposal (incl. estimated amounts of material sorted out):

- Decont (as necessary) 5% of 5400 ton => 270 m³ (4%) and clearance
- Off site metal treatment 5% of 6800 ton => 340 m^3 (6%)
- Incineration
- Direct disposal

5 % of 400 ton => 20 m³ (<1%) 100% of 5400 ton => 5400 m³ (90%)

TOTAL = 6000 m^3

Disposal volume VLLW/LLW

18000 m³ => 6000 m³

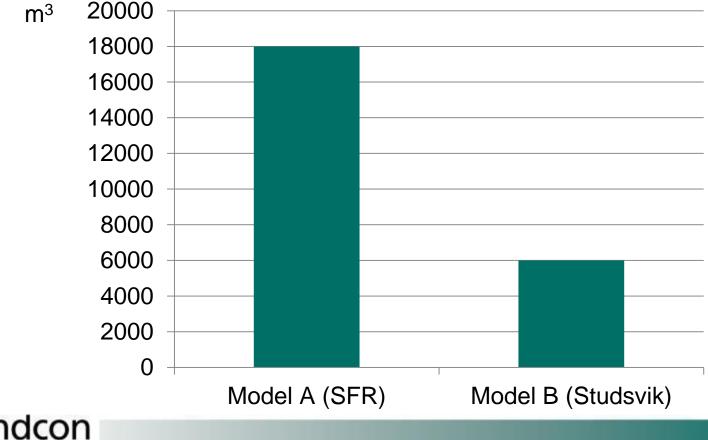
This document contains proprietary information owned by the **ndcon** companies. All rights reserved.

Unit 1

Unit 2

Calculation of RPV activation

			Unit 1		Unit 2	
		Between		Base		Base
		cm	Cladding	material	Cladding	material
	1150	top	0	0	0	0
Direct free release	1100	1150	0	0	0	0
Direct free release	1050	1100	0	0	0	0
of ingots	1000	1050	0	0	0	0
eringete	950	1000	0	0	0	0
	900	950	0	0	0	0
	850	900	0	0	0	0
-10 yr ingot	800	850	0	0	0	0
	750	800	0	0	10	10
decay storage	700	750	10	10	25	10
	650	700	10	10	25	25
	600	650	10	10	25	25
	550	600	25	25	25	25
10-25 yr ingot	500	550	SFR	25	SFR	SFR
decay storage	450	500	SFR	SFR	SFR	SFR
uecay storage	400	450	SFR	SFR	SFR	SFR
	350	400	SFR	SFR	SFR	SFR
	300	350	SFR	SFR	SFR	SFR
	250	300	SFR	SFR	SFR	SFR
To be disposed	200	250	SFR	SFR	SFR	SFR
•	150	200	SFR	SFR	SFR	SFR
as radioactive	100	150	SFR	SFR	SFR	SFR
waste	50	100	SFR	SFR	SFR	SFR
Wable	0	50	SFR	SFR	SFR	SFR
	-50	0	SFR	SFR	SFR	SFR
	-100	-50	SFR	25	SFR	SFR
	-150	-100	25	25	SFR	25
	-200	-150	25	25	25	25
	-250	-200	10	10	25	25
	-300	-250	10	10	25	10
	-350	-300	10	10	25	10
	bottom	-350	10	10	10	10
_	RPV Head		0	0	0	0


Volume RPV reduction and recycling

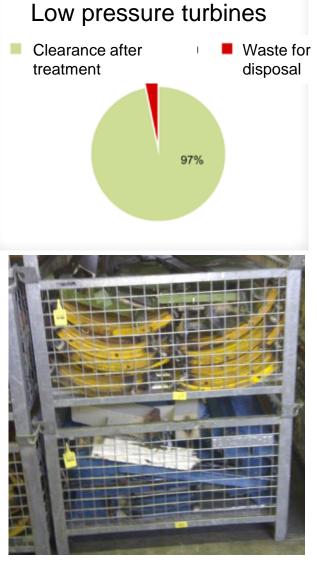
- Disposal volume reduction from 600 m³ to <60 m³ per RPV
- Degree of free release of material >70%

	Unit 1 (ton)	Unit 2 (ton)
Direct free release	189	178
Free release after 10 years decay	168	146
Free release after 25 years decay	55	66
Disposal at SFR	121	143
Secondary waste incl. isolation (4%)	21	21
Degree of free release	74%	70%

LLW waste disposal volume

References

Example of waste streams


BWR upgrade project

Metals from BWR decomm project (example)

- Mainly scrap loaded in containers
- 5400 ton
- Percentage free release >95%

Metal clearance through melting - Results

Generally a PWR D&D project generates less than 50 % of waste than a BWR of similar size but with higher specific activity.

BWR reference

- More than 6000 tonnes has been treated
- Secondary waste in return: 3-4%(weight)

PWR reference

- More than 2000 tonnes has been treated
- Secondary waste in return 3-4 %(weight) for containerized scrap
- Higher percentage secondary waste for steam generator

Conclusions

Recycling of metals from decommissioning of nuclear facilities is

- Well proven
- Cost efficient
- Sustainable
- Possible to adapt in different forms and combinations based on local conditions.
- Requires significant competence and a robust waste management structure.

Thank you for your attention

