

forward-looking energy

Metallic surfaces decontamination by using LASER light

Fabrice Moggia (Ph.D) AREVA Dismantling and Service Technical Direction

Symposium on Recycling of metals arising from operation and decommissioning of nuclear facilities, April 8-10, 2014 Nyköping (Sweden)

Contents

State of the art

Overview of the LASER technology

Implementation of the LASER technology

Validation of the technology

Conclusion

State of the art

First studies in 80s-90s

Two different technologies:

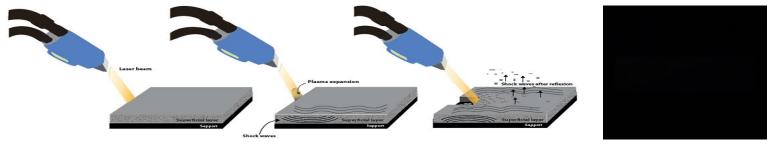
- Excimer type LASER (Gas-UV).
- Solid-state type LASER (YAG or Fiber).

Today: Predominance of solid-state technology:

- Higher repetition rate (a few tens of kHz vs a few tens of Hz).
- Higher optical fiber length (\rightarrow without power loss).

The LASER decontamination in the literature:

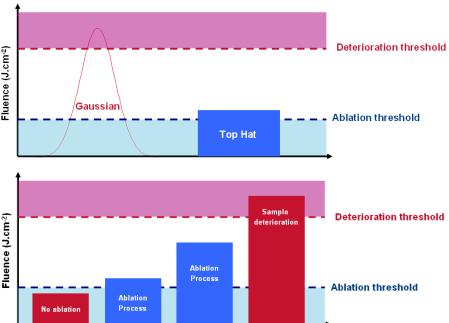
- ♦ A few papers and thesis.
- Most of the time, 2.5 to 3.0 J.cm⁻² are required to achieve the decontamination.



Overview of the LASER technology

The technology is based on the interaction between a LASER beam and the surface of the sample (oxide layer, paint...)

Conjugation of 2 concomitant mechanisms:


- Thermal effect: the rapid increase of the surface temperature, due to the interaction between the LASER beam and the metallic surface, will result in the formation of plasma.
- Mechanical effect: the plasma expansion will generate some mechanical waves which will propagate into the surface to crack and cause the ejection of contaminated particles.

Overview of the LASER technology

- Main parameters we have to focus on:
 - 1. LASER beam profile: 2 possibilities
 - Gausian → non homogenous distribution
 - Top Hat → homogeneous distribution
 - 2. Fluence: Energy per surface unit
 - **3 possibilities**
 - No ablation
 - Ablation
 - Deterioration
 - Pulse duration: Impact the depth of heating and thus, the efficiency of the process (→ from a ten to a hundred of nanoseconds)
 - <u>Power</u>: If the ablation threshold is reached → increase of power induced an increase of speed rate

Implementation of the technology

The LASER

3 different units:

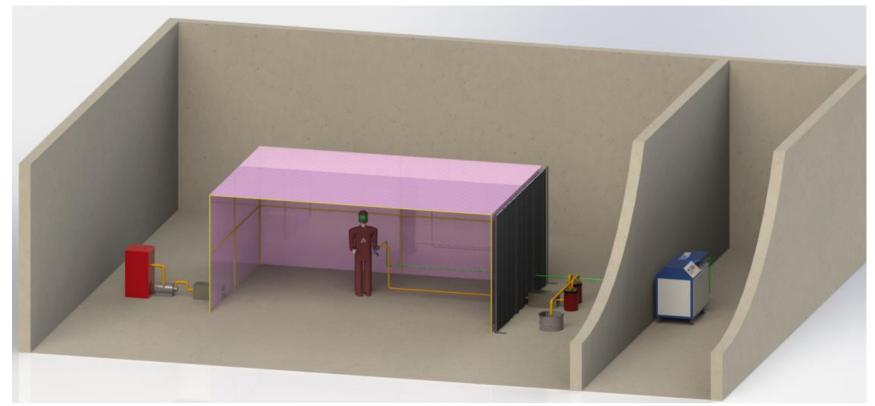
- The LASER skid
- The optical fiber
- The gun

Fiber LASER type

- Low to mid power
- Compact and light
- Optical fiber limiter
- Air cooling system

YAG LASER

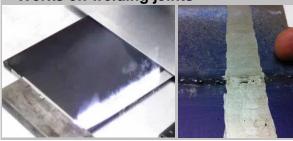
- Medium to high po
- Bulky equipment (~ 200 kg)
- Optical fiber up to 50-70 m
- Air-water cooling system


TET

Implementation of the technology

Standard " implementation in hot cell

In non nuclear conditions

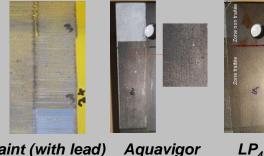

Whiteboard ink

Coppersmith ink

- Simulant for the non fixed contamination
- Speed rate > 11 m².h⁻¹

- Simulant for the fixed contamination
- Speed rate > 8 m².h⁻¹
- Works on welding joints

- · Works with a thin layer of grease
- Speed rate ~ 4 m².h⁻¹



Grease

Coatings (paints, resins)

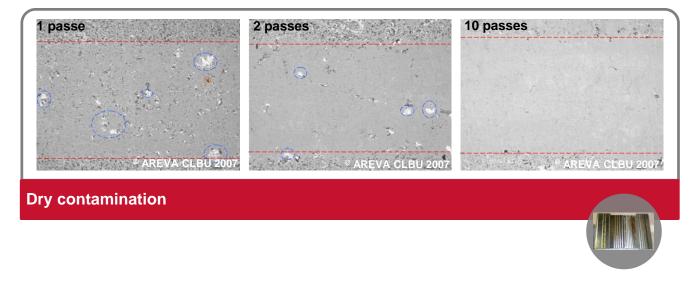
 Speed rate and efficiency are strongly dependent on the chemical composition of the coating

Paint (with lead) Aquavigor

Metallic surfaces decontamination by using LASER light – Symposium on Recycling of metals - April 8-10, 2014 Nyköping (Sweden) All rights reserved – © AREVA 2014 P.9

Highly efficient

Ferric oxide (Rust)

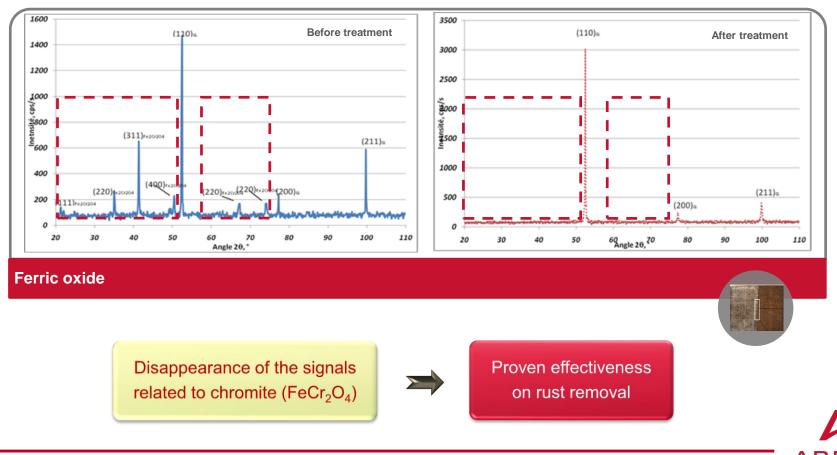


In non nuclear conditions

Surface analysis

Scanning Electron Microscopy

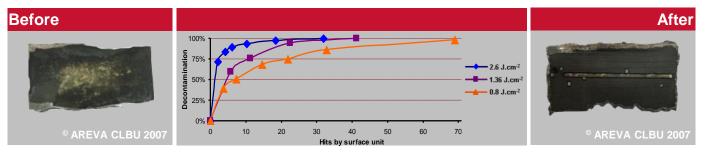
• Stable radionuclides have been used (Cs₂CO₃, SrCO₃, RuO₂...)


Proven effectiveness on radionuclides removal

In non nuclear conditions

forward-looking energy

Surface analysis


X-Ray scattering analysis

In nuclear conditions

1st trials on storage tank samples

Thick oxide layer

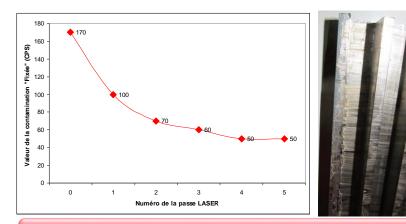
Initial contamination ~ 1000 cps

2nd trials on metallic samples stored inside a pool

- Greasy contamination
- Initial radiological data
 - 400 cps (α)
 - 7000 cps (βγ)
- Final radiological data
 - 4 cps (α) → DF100
 - 140 cps (βγ) → DF 50

In nuclear conditions

3rd trials on lead ingots


- The ingots came from the CEA Marcoule
- Fixed contamination less than 100 bq.cm⁻²

4th trials on cask mockup

- Initial radiological data
 - 170 cps (βγ)
- Final radiological data
 - 50 cps (βγ) →1.5 Bq.cm⁻²

The French transportation standards can be reached by using the LASER technology

Conclusion

The LASER technology appears to be one of the best tool

- Dry process, no use of chemicals, no secondary liquid waste
- Works on samples with different geometries and orientations
- Interesting speed rates especially on rust
- Fully remote controlled
- No direct contact between worker and surface

Complete radiological protection of the equipment

Patented protection of the gun (FR2980384, JP 2012-031480, EP121852925)

Thank you for your attention

