RECYCLING OF RARE METALS FROM THE DECOMMISSIONING OF NUCLEAR FACILITIES

Symposium on recycling of metals, April 8-10, 2014, Studsvik, Sweden Dr. Frank Charlier, Dipl.-Phys. Jan Philipp Dabruck, RWTH Aachen University (Germany)

netiz: **RWTH**AACHEN

CONTENT

- Phase out and decommissioning in Germany
- Project "recycling of rare metals": idea, project partners, project goals
- Sustainability and public acceptance
- Work schedule
- Material mass flow and metals in focus
- Activation calculation and decay of activity
- Assessment of recyclability of rare metals from decommissioning

PHASE OUT AND DECOMMISSIONING IN GERMANY

Recycling of rare metals from the decommissioning of nuclear facilities

Dr. Frank Charlier, Dipl.-Phys. Jan Philipp Dabruck, RWTH Aachen University (Germany) Symposium on recycling of metals, April 8-10, 2014, Studsvik, Sweden

SITUATION IN GERMANY

- In 2011, 19 NPP's had been in operation
- Life Time Extension of German NPP's 01/2011
- Fukushima accident: 03/2011
- Shut down of 8 NPP's
 08/2011

Consecutive shut down of the remaining 9 NPP's by the end of 2022

DECOMMISSIONING OF GERMAN REACTORS

Recycling of rare metals from the decommissioning of nuclear facilities

Dr. Frank Charlier, Dipl.-Phys. Jan Philipp Dabruck, RWTH Aachen University (Germany) Symposium on recycling of metals, April 8-10, 2014, Studsvik, Sweden

RECYCLING OF RARE METALS -PROJECT IDEA AND PROJECT GOALS

PROJECT IDEA

Recycling of rare metals from decommissioning of nuclear facilities:

Investigation, into which strategically important rare metals are present in nuclear facilities and whether they are economically recoverable or not.

PROJECT PARTNERS

- NET RWTH Aachen University
 Institute for Nuclear Engineering and Technology Transfer
 - Decommissioning
 - Waste Management
 - Nuclear Simulation
 - Final disposal, storage
- IME RWTH Aachen University
 Institute for Process Metallurgy and Metal Recycling

"IME is Europe's leading institute for process metallurgy and metal recycling"

RECYCLING OF RARE METALS -PROJECT GOALS (1)

- Identification and quantification of relevant metals in selected components
- Calculation, as to which of these components are not radioactive and are accessible for a further metallurgical recycling
- Calculation, regarding which of these components are accessible for metallurgical recycling after the decay of activity or after decontamination

RECYCLING OF RARE METALS -PROJECT GOALS (2)

- Process evaluation of the recoverability and recyclability of rare metals of the identified components
- Presentation of the economic importance of a resource-efficient metal recycling programme

SUSTAINABILITY AND PUBLIC ACCEPTANCE

netia: **RWITH**AACHEN

SUSTAINABILITY AND PUBLIC ACCEPTANCE

- Non recycled metals are permanently lost
- Waste reduction
- Reduction of mining activities
- Conservation of resources

Higher public acceptance for decommissioning projects

GENERAL WORK SCHEDULE

GENERAL WORK SCHEDULE (1)

- Creating a data base for identified economic strategically relevant components and metals
- Establishment of a simulation model to determine the activation of the components of the NPP
- Identification and analysis of the recyclability of relevant components and determination of technically possible recoverable amounts

GENERAL WORK SCHEDULE (2)

- Development of a resource-efficient recovery technique for these rare metals
- Concentration in appropriate recycled products (material-groups and alloy-groups)
- Evaluation of the economic potential of an optimized decommissioning

GENERAL WORK SCHEDULE (3)

MASS FLOW AND METALS IN FOCUS

MATERIAL FLOW FROM DECOMMISSIONING

DECOMMISSIONING AMOUNTS EXAMPLE NPP STADE

non- nuclear area	nuclear area								
198.000 t		132.000 t							
	controlled release	controlled reuse and recycling	radioactive waste						
	128.500 t	500 t	3.000 t						
	97,3 %	0,4 %	2,3 %						

PWR-NPP Stade [E-ON]

NON-FERROUS METALS IN FOCUS (E.G.)

1 H		> 50 %													2 He		
3 Li	4 Be	> 25-50 %										5 B	6 C	7 N	8 0	9 F	10 Ne
11 Na	12 Mg		<1%									13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	N D	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
55	56	•	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba		Hf	Ta	W	Re	0s	Ir	Pt	Au	Hg	T I	Pb	Bi	Po	At	Rn
87	88		104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra		Rf	Db	Sg	Sg	Hs	Mt	Ds	Rg	Uub	Uut	Uug	Uup	Uuh	Uus	Uuo
		+															
• Lanthanides		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
•• Ac	tinides	1	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

- indium (In)
- niobium (Nb)
- vanadium (V)
- tin (Sn)
- nickel (Ni)
- molybdenum (Mo)
- silver (Ag)
- hafnium (Hf)

· ..

Recycling of rare metals from the decommissioning of nuclear facilities

Dr. Frank Charlier, Dipl.-Phys. Jan Philipp Dabruck, RWTH Aachen University (Germany) Symposium on recycling of metals, April 8-10, 2014, Studsvik, Sweden

netia: **RWTH**AACHEN

RELEVANT COMPONENTS (E.G.)

- Components of the primary circuit
 - Reactor internals
 - Absorber-facilities
 - Grid structures
- Components of the control technology
- Pumps
- Fittings
- Heat exchangers
- Steam generator

ACTIVATION CALCULATION

STEP 1

STEP 2

ACTIVATION CALCULATION SCHEDULE

Recycling of rare metals from the decommissioning of nuclear facilities

Dr. Frank Charlier, Dipl.-Phys. Jan Philipp Dabruck, RWTH Aachen University (Germany) Symposium on recycling of metals, April 8-10, 2014, Studsvik, Sweden net.

RNTHAACHEN

Recycling of rare metals from the decommissioning of nuclear facilities Dr. Frank Charlier, Dipl.-Phys. Jan Philipp Dabruck, RWTH Aachen University (Germany) Symposium on recycling of metals, April 8-10, 2014, Studsvik, Sweden

26

CAD

0 x 0.000000 Y 0.00000C Z 7450.000

FRJ-2, JÜLICH

MCNP

NEUTRON-FLUX

netia: **RWTH**AACHEN

"Virtual Reactor" with neutron flux distribution calculated by MCNP

883.00-859.00-

Calculated with **ORIGEN** based on neutron flux distribution and detailed material composition

ACTIVATION CALCULATION

Recycling of rare metals from the decommissioning of nuclear facilities Dr. Frank Charlier, Dipl.-Phys. Jan Philipp Dabruck, RWTH Aachen University (Germany) Symposium on recycling of metals, April 8-10, 2014, Studsvik, Sweden

net.

RNTHAACHEN

DECAY OF ACTIVITY

DECAY OF ACTIVITY

- component-wise determination of the nuclide vector and the activity inventory
- calculation of the activity attenuation over time with respect to decay chains of the nuclides
- calculation of the period after which the specific components can be recycled

ASSESSMENT OF RECYCLABILITY

ASSESSMENT OF RECYCLABILITY

neti: **RWTH**AACHEN

ASSESSMENT OF RECYCLABILITY (1)

- Classification of the identified materials by recyclability: analysis of the material shape, texture and the composition of the structures, alloys and components
- Selection of suitable process chains for metal recycling

ASSESSMENT OF RECYCLABILITY (2)

- Presentation of the distribution of recoverable and recyclable non-ferrous metals
- Evaluation of the results
- Decision to be taken, if recycling of specific components is feasible and of economical interest

SUMMARY

SUMMARY (1)

Recycling of rare metals from the decommissioning of nuclear facilities

- Detection of rare metals in relevant components
- Interdisciplinary approach:
 - nuclear simulation
 - activation calculation
 - metallurgical consideration
 - feasibility of recycling
 - economic consideration

SUMMARY (2)

Recycling of rare metals from the decommissioning of nuclear facilities

- Decision, if substitution of raw materials by recycling of rare metals from decommissioning is
 - technically feasible and of
 - economical interest

RECYCLING OF RARE METALS FROM THE DECOMMISSIONING OF NUCLEAR FACILITIES

Symposium on recycling of metals, April 8-10, 2014, Studsvik, Sweden Dr. Frank Charlier, Dipl.-Phys. Jan Philipp Dabruck, RWTH Aachen University (Germany)

