

Optimization of waste and materials disposition in France Policy, strategies, and techniques

Michel Dutzer – Andra

With the contribution of Jean François Rives (SOCODEI)

IAEA-OECD/NEA –Studsvik symposium April 6-10, 2014

© Andra

DI/DIR 14-0062

Recycling of metals arising from operation and decommissioning of nuclear facilities: the challenges in France

- 1. The landscape and involved actors in waste management in France
- 2. Present status of waste disposal in France: the issues
- 3. Policy, strategies: the national governance
 - The National radioactive wastes and materials management plan
- 4. Metals recycling
 - Present experiences in France
 - Very low level metallic waste recycling: some issues

5. Conclusion

ANDRA

The landscape and involved actors in waste management A significant nuclear industry

C Andra DI/DIR 14-0062

The landscape and involved actors in waste management EDF decommissioning programme

1 heavy water reactor

1 pressurized light water reactor

<u>6 natural uranium graphite gaz cooled</u>

1 fast breeder reactor

The landscape and involved actors in waste management AREVA decommissioning programme

The landscape and involved actors in waste management CEA decommissioning programme

Nuclear submarines

The landscape and involved actors in waste management The involved actors

C Andra DI/DIR 14-0062

ANDRA

The landscape and involved actors in waste management A specific regulation for nuclear facilities

No free release for nuclear wastes

Present status of waste disposal in France: the issues Disposal operated and planned routes

ANDRA

ANDRA

Present status of waste disposal in France: the issues Situation of the operational routes

Centre de l'Aube	
Operated since 1992	
Licensed capacity :	1 000 000 m ³
Volume disposed of : (end 2013)	280 000 m ³
(Centre de la Manche: 527,000	0 m ³ disposed)
Present deliveries:	14 000 m ³
Initial design for operational	waste (30 000 m^3/vez

Initial design for operational waste (30 000 m³/year) . Initially forecast for 30 years of operation

VLLW disposal at CIRES (centre de Morvilliers)		
Surface :	45 ha	
Licensed capacity :	650 000 m ³	
Operated since 2003		
Volume disposed of (end 2013) :	252 000 m ³	
Initial design for 30 years of operation		

Present status of waste disposal in France: the issues Disposal of large components

Present status of waste disposal in France: the issues The issues for the operated disposal routes

Low level wastes

Waste generation forecast (2012) 1 200 000 m³ in 2030 (including 527,000 m³ at Centre de la Manche)

1 500 000 m³ after decommissioning of present or decided facilities

No volume problem to be anticipated

Very low level wastes

Waste generation forecast (2012) 1 300 000 m³ in 2030

2 000 000 m³ after decommissioning of present or decided facilities

New disposal capacities needed

Legal framework: June 28th , 2006, waste act

Code of Environment: laws and regulation

Implementation of a National radioactive wastes and materials management plan (PNGMDR)

- Co-chaired by Ministry and ASN
- Involves
 - Ministries
 - ASN
 - IRSN
 - Operators
 - NGO
- Input : national inventory by Andra
- Develops the strategy for waste management
- Update every 3 years

Disposal should be considered as a rare resource

- For VLL waste
 - Densification of waste
 - Densification of the disposal facility
 - Re-use of concrete scrap to backfill disposal cells
 - Recycling of metallic wastes

Program for 2010-2012:

- A shared study by the main French nuclear operators, AREVA, CEA and EDF, and Andra
- To assess the opportunity and economical/technical feasibility of the implementation of recycling routes.

In accordance with the French doctrine:

- recycling should be performed within the nuclear industry.
- Therefore stringent constraints on the traceability of materials.
- Potential constraints in the facilities that could process these materials
 - radiation protection
 - management of secondary wastes generated by the processes.

- Implementation by Areva in 2003 and operated by the CEA since 2005.
- Collection of lead inside Marcoule nuclear facilities,
- First melting inside Marcoule facility to make ingots (activity < 1 bq/g)</p>
- Second melting in a conventional facility to manufacture shieldings,
- Recycling in nuclear facilities.
- 100 tons of lead per year currently recycled.
- However
 - a fourth of the capacity of the melting furnace
 - costly in comparison with a direct disposal in a VLL disposal facility.
- Therefore it is planned to stop this route.

- Electric induction furnace with a capacity of 4 tons
- Treatment of an average of nearly 1,700 t / year.
- waste outputs:
 - volume reduction : non-recyclable waste shipped as ingots to disposal facilities
 - LL → VLL
 - Recycling: internal cylindrical shieldings for packages used for intermediate level waste (spent resins).
- Mean activity of metal that was process to make shielding: 6 Bq/g, with a maximum value of more than 160 bq/g.
- Between 1999 and 2011 21,700 tons processed
 600 tons recycled in shieldings.

LOW LEVEL RAD-WASTE VOLUME REDUCTION: THE CENTRACO FACILITY

Waste acceptance criteria (melting)

Radiological criteria

- *βγ-emitters:* 20 000 Bq/g max + 20 000 Bq/g 3H
- \bullet α -emitters: 370 Bq/g max

Physical and chemical criteria: limits on:

- Non ferrous
- Conditioning accepted
- Melting: Reusable ISO CTRS & boxes, single use drums

CURRENT PRODUCTS

Tubular radiological shields (MERCURE ctrs) :

Material: carbon steel

€ize : 100 x 100 cm ,

thickness: 40 mm or 70 mm,

■op, bottom & stirring bar : non radioactive carbon steel,

These shields are incorporated in concrete shells to form shielded containers (300 years certification). They are used for waste conditioning in the embedding processes.

19 DI/DIR 14-0062 IAEA-OECD/NEA – Studsvik symposium April 6 10 2014

SEALED CONTAINER SECTION

TUBULAR SHIELD FABRICATION PROCESS

Decontamination by melting

TUBULAR SHIELD FABRICATION PROCESS

Centrifugation

TUBULAR SHIELD FABRICATION DESCRIPTION

Control of finished products

SPENT RESINS CONDITIONING

A review of the forecast inventory of metallic VLL waste to be generated

- 400,000 tons for the next 30 years
 - 250 to 375,000 tons with a very very low level activity
 - 90% of ferrous waste

5 to 10,000 tons easy to be recycled

 But 0.1% of conventional recycled steels in France

Homogeneous components: 140,000 tons from the dismantling of a gaseous diffusion enrichment plant

Other more heterogeneous

Metals recycling Metals potential re-use

Recycling within the nuclear industry

Different types of products considered with a potential re-use of 300,000 tons for the next 30 years:

Construction products in nuclear facilities with a focus on steel frames to reinforce concrete.

But

- Mainly steel materials
 - Not relevant to be processed in a dedicated steel facility (low quantities)
 - Generally manufactured prior use
 - Traceability constraints for re-use
 - During implementation
 - When decommissioning the facilities (if planned)
- ➔ Industrially and economically not relevant

Packages to condition wastes with a focus on the replacement of LL concrete containers

- Cast iron containers
 - Relevant with a dedicated cast iron facility (foundry)
 - Could enable volume reduction for LL and VLL waste packages

But

- Re-assessment of disposal safety case needed
- Modification of conditioning and handling tools in facilities where wastes are processed
- → Significant industrial impact on operated facilities
- Significant costs forecast on waste conditioning facilities

No obvious short term outlet for VLL recycled metals in presently operated facilities

- → Should rather be considered for new built facilities or opportunities
 - New nuclear facilities
 - New disposal facilities: components or packages
 - •

Economical and industrial relevance as a major challenge

- Competition with direct VLL disposal route
- Sensitivity to constraints derived by the interpretation of the French regulation

New options to be explored and assessed

Still a sustainable development challenge !