Studsvik

Berkeley Boilers Project

Studsvik Symposium April 2014

Berkeley NPP

- Twin Magnox Reactors
- Operating 1962 1989
- First UK commercial reactor to enter decommissioning
- Currently managed on behalf of the Nuclear Decommissioning Authority by Energy Solutions Inc.
- Boilers deplanted in 1997
- Full care & maintenance status by 2021
- Final site clearance in 2070's

Berkeley Boilers

- 8 boilers (heat exchangers) per reactor
 - Length: 21 meters
 - Diameter: 5 meters
 - Weight: 310 tonnes
- Total activity of ~40 GBq/boiler
- Dose rates up to 50µSv/hr
- One boiler sized reduced on site in the 1990's
- Remaining 15 stored horizontally
- Lifetime plan was for boilers to remain until 2070's

Studies

Graduate Study 2010 – Treat Now?

- Government LLW Policy, 2007
 - Presumption to Early Solutions
- National Low Level Waste (LLW) Strategy, 2010
- For LLW metals the Best Available Technique is to treat/recycle
- Noticeable change to the site skyline
- Provides base load for supply chain
- Remains LLW if stored to final site clearance on site, so why not do it now?
 - Storage saddles in need of replacement,
 - Undue loading of reactor basement walls
- Funding available "in year"

Feasibility Study – March 2011

- Suitable route available that minimises road transport
 - Road to Sharpness Docks
 - Barge to Avonmouth as Sharpness access is limited
 - Sea going vessel to Sweden
- Route survey undertaken as part of the transport study identified challenges on route
 - Telephone cables
 - Utilities
 - Street furniture
 - Bridges/culverts
 - Tree trimming
 - Road closures

Stakeholders & Regulators

Early Engagement

- Office for Nuclear Regulation
- Environment Agency
- Site Stakeholders Group
- Swedish Regulator SSM
- Finnish Regulator STUK
- Maritime & Coastguard Agency
- Gloucestershire County Council
- Highways Agency
- Port Authorities & Trustees

Feasibility Study – March 2011

Conclusions

- Transport as whole units was feasible
- SCO-1 Criteria met
- Initial Regulatory interaction was positive
- Methods were proven
- Preparatory Works should be carried out to reduce project risk
 - Health Physics Surveys and Characterisation
 - Non Destructive Examination
 - Engineering Design Assessment
 - Bridge & Culvert Assessment
 - Transport and Load Planning
 - Trans Frontier Shipping Approval
 - Confirmation of Transport Category

Preparatory work was key to unlocking the project and exploiting in-year funding

Programme of Work

Tendering Programme

- Competitive Tendering Exercise August 2011
 - New Constraint Ground Loadings due to underground structures
- Project Funding possible late 2011 "Flywheel"
- Key Driver Specified number of boilers off site by 31st March 2012 This was Lot 1 : Minimum 1 x boiler : Studsvik Proposed 5 x boilers
- Remaining boilers to be dealt with under separate contract (Lot 2)
- All preparatory work identified in study was still required
- Lot 2 was re- bid in August 2012 for removal of remaining boilers by 31st March 2013

Contract Programme

Contract award:	4 th Nov 2011	5 th Nov 2012
 Highways Agency approval: 	12 th Jan 2012	16 th Nov 2012
 TFS Approval: 	19 th Jan 2012	In place
• Lift 1 st boiler:	25 th Feb 2012	12 th Jan 2013
 Transport 1st boiler: 	16 th Mar 2012	22 nd Feb 2013
Transport last boiler:	22 nd Mar 2012	15 th Mar 2013
 Last boiler in Sweden: 	6 th Apr 2012	31 st Mar 2013

Studsvik

Design Considerations

Structural Integrity

Review of Component parts

- Boiler Shell
- Saddles
- Internal Structures
- Tubes

Assessment methods

- Design information
- Inspection & survey
- Operation & maintenance records

Penetrations – Method of Sealing

Design - Enabling Works

- Engineering
 - Weld Assessment
 - Finite Element Analysis
 - Loading Models

- Non Destructive Examination
 - Boiler Vessel
 - Seal Welds
 - Flanged Connections
 - Saddles

Project Delivery

Delivery - Enabling Works

- Project and Site Mobilisation
- Documentation
 - Project and Specific
- Regulatory Authorisations
- Substantiation
 - Design Integrity (engineering review, NDE)
 - Radiological Condition (surveys)
 - Radiological Characterisation (WAC Studsvik & LLWR)
 - Transport Category
 - Regulators (ONR RMTT, EA, HA, GCC, Port Authorities)
 - Boiler preparation
 - Ground Loading

Integral tasks that must be completed before lifting / transport

could commence

Site Preparation

- Removal of ancillary steelwork
- Thermocouples / penetrations
- NDE & Visual Inspection
 - Boilers
 - Transport Saddles
- Welding
- Health Physics Surveys
 - Early completion
 - Regulatory checks
- Civil Preparations

Lifting and Site Transport

Lifting to skid tracks

Skidding & Transfer to Site Storage

Off site transport

Tranship to road trailer via SPT

Shipping operations

Video – First Project (Lot 1)

Treatment

Volume reduction & recycling - SWE

Large Components (BWR, Magnox)

Processing

- Recovery of loose material
- Size reduction
- Decontamination of internal surfaces
- Smelting
- · Casting of ingots for free release
 - Melting of metal ensures robust characterisation analysis
 - Representative sample "pucks"
 - Metal is released as per Studsvik license

Secondary Waste Management

- Volume reduced waste consists of ;
 - Grit blasting dust from decontamination
 - Dust from ventilation systems
 - Slag from cutting and metal melting
 - Ash and dust from incineration
- All secondary waste packages are gamma analysed for radiological content
- Existing residual dust (including graphite) analysed for Carbon – 14.
- A comprehensive Final Report is generated during processing with radiological analysis data
- Use of standard packages for return of secondary waste

Project Outcomes – Secondary Waste

Volume: ~ 650 m³

Weight: ~ 310 tonnes

Lessons from Treatment

Transport Category – SCO1

Lot 1 Original Assumptions – Conservative

- Based upon micro-shield modelling activity was assumed to be x2 Magnox fingerprint i.e. 71GBq.
- Only surface area of the boiler shell was considered for contamination distribution i.e. 3,520,000cm².

From Treatment Results

- Activity based upon measurements of all ingot batches and every secondary waste drum = 14 to 22GBq.
- Internal structures excluding tube fins account for more than 130,000,000cm²
- External dose rates correlated well to measurements during treatment

Considered for Lot 2 & supported by Regulators

Lessons from Treatment

- Very small amount (5kg) of residual material so far from 12 boilers.
- Internal components and materials have not deteriorated.
- Flanged assemblies contain Metaflex gaskets (Asbestos)

Lessons from the Project

Early evaluation of project

- Identification of uncertainties and risks
- Early enabling / preparatory works

Early engagement of stakeholders (international)

- Regulators
- Interested Groups
- Site personnel
- Client(s)
- Contractors

Collaboration between all parties

- Joint Risk Register
- Single schedule
- Weekly progress review
- Daily interaction

NDA Supply Chain Award for Best Collaborative Project

Conclusions

Lot 1

- First five Boilers completed
- 3 x HHISO LLW & 3 x HHISO LALLW

Lot 2

- All boilers delivered to Sweden by 31st March 2013
- Seven boilers now completed
- Treatment & return of secondary waste will complete by December 2014

Magnox Gas Circuit Large Components

- Can be safely transported
- Can be effectively recycled
- Small amount of secondary waste

