FORM-A

INFORMATION ON TRANSMUTATION DEVICES AND THEIR PHYSICS PARAMETERS

Affiliation:	
Address:	
Tel:	Fax ::
eral	
Selected nuclides to be t	ransmuted in your transmutation device:
DCICCOCC MUCITUDE CO DC C	ransmacca in your cransmacacron acvice.
capability, conservative d	deration in your design work, such as transmutation design, small change from original core Performance so on:
	design, small change from original core Performance
capability, conservative d	design, small change from original core Performance
capability, conservative d	design, small change from original core Performance
capability, conservative d	design, small change from original core Performance
capability, conservative d	design, small change from original core Performance
capability, conservative d	design, small change from original core Performance
capability, conservative d	design, small change from original core Performance
capability, conservative desafety consideration and	design, small change from original core Performance

driven device, go to Section III in page 8.

11.	Nuclear	Reactor	used	for	transmutation
-----	---------	---------	------	-----	---------------

We provide the information form for uraium-plutonium cycle based nuclear reactor here. Then, if You work for thorium-uranium based reactor, please kindly provide similar form.

(1) Description of nuclear reactor:
1) Type of reactor:
□ PWR □ BWR •1 Gas-cooled reactor □ Heavy water-moderated reactor □ LMFBR □ Liquid metal-cooled reactor •1 Others
If You select <u>Others</u> or there is fairly large difference between your proposing reactor and its original reactor listed above, please give its brief description of illustration here or another white sheet.
2) Thermal and electric powers:
 Thermal power:MWt Electric power:MWe
3) <u>Core dimension</u> :
 Equivalent core diameter: cm Equivalent core bight : cm
4) Fuel arrangement regarding transmutation materials:
☐ Homogeneous arrangement ☐ Heterogeneous arrangement
In the case of Heterogeneous arrangement,
. Volume ratio of fuels with transsrnutation materials to all fuels:
5) <u>Type of fuels</u> :
•l Oxide fuel •l Nitride fuel •l Carbide fuel □ Metallic fuel
6) Core averaged fresh fuel composition (wt%):
· U : Pu : Np,Am,Cm : long-lived FP= : : :

7)_	Isotopic	composition	(wt%) of P	u,Minor	Actinide((Np,Am,Cm)	and	long-lived	FP:
	" Pu								

Pu-238	Pu-239	Pu-240	Pu-241	Pu-242

Minor Actinide (Np,Am,Cm)

Np-237	Am-241	Am-242	Am-243	Cm-243	Cm-244	

Long-lived fission products (ex.Tc, I etc.)

Please add isotopes of long-lived FP, if necessary.

8) Averaged core composition (vol%):

Fuel	Clad+Structure	Coolant	Moderator*

^{*:} for gas-cooled reactor, heavy water-moderated reactor, etc.

(2) General physics parameters and transmutation capability:

1) Principal core characteristics:

Items	BOL1)	BOEC2
Thermal power in core (MWt) Power density: averaged in core (w/cm') maximum in core (w/cm') Linear heat rate: avaraged (w/cm) maximum (w/cm) Neutron flux averaged in core (n/cm².see) Neutron energy averaged in core (KeV) Fuel dwelling time in core (EFPD)* Burnup reactivity swing (% & k/k/365 EFPD)		

^{*:} Equivalent Full Power Days, 1) Beginning of life, 2) Beginning of Equilibrium cycle

2) Inventory and transmutation capability:

· Fuel and transmutation material inventory and their mass balance:

	Initial	Mass ba	alance in EOC	C (unit:kg)		
Nuclides	inventory (kg)	BOEC ¹⁾ mass	EOEC ²⁾ mass	EOEC-BOEC		
Uranium						
U-235						
U-236						
U-238						
Plutonium						
Pu-238						
Pu-239						
Pu-240						
Pu-241						
Pu-242						
Neptunium						
NP-237						
Amerisium						
Am-241						
Am-242m						
Am-243						
Curium						
Cm-242						
Cm-243						
Cm-244						
Cm-245						
Higher actinides						
Long-lived FP						
J						

^{1):}Beginning Of Equilibrium Cycle, 2):End Of Equilibrium Cycle. Please add isotopes of long-lived FP for transmutation, if necessary.

. Transmutation capability

Transmutation capability = $\frac{\text{Difference of minor actinides between EOEC and BOEC}}{(\text{EFPY*between EOEC and BOEC}) \times \text{thermal power(MWt)}}$ $= \frac{\text{kg/MWt} \cdot \text{EFPY}}{\text{*:Equivalent Full Power Year.}}$

(3) Safety-related physics parameters:

Please fill the table with the values at BOL.

Parameters	Values
Coolant void reactivity effect (δ k/k)	
- All reactor region voided	
- Core and axial blanket voided"	
- Only core voided*	
Doppler reactivity coefficient* (Tdk/dT)	
Effective delayed neutron fraction"	
Prompt neutron life time* (see)	
Contol rod material	
Central control rod worth (%δk/k/kg)	

*:only for fast reactors.

(4) Data and method used in reactor design work:

1) Nuclear data:

. 1	Nuclear data	source library	or	group	cross	-section	library:	
	ENDF/B-	□ JEF	• 1	JENDL-		•i Othe	ers	
	ORIGEN-	☐ WIMS		JFS		CARNAVAI	L- •I	Others

	any significant modifications for the and long-lived FP isotopes, please
2) <u>Calculation method</u> :	
. Neutronic calculation code:	
Name of code:	☐ Diffusion ☐ Transport •1 2D •1 3D
Number of energy group used for	calculation:
If there are any significant difference code, please give their brief descrip	ces between your code and usually used ption.
-Burnup calculation code:	
Name of code:	□ OD □ 1D □ 2D □ 3D
If there are any significant different burnup chain model of minor actinic please give their brief description.	de and long-lived FP isotopes,

(5) Integral experiment relat	ed to transmutation:	
1) <u>Irradiation experiments</u>	in power reactor:	
·Name of facility:		reactor mal reactor
• Irradiated minor actin	ide and long-lived FP isotop	es:
• Purpose of experiment:	•1 Nuclear data verificat•1 Transmutation rate mea•1 Others	
If You select_Others,please	give a brief description.	
2) Experiment in critical a	ssembly and research reactor	;
. Name of facility:		neutron field nal neutron field
Measured minor actinid	e and long-lived FP isotopes	:
· Kind of measurements:	•1 Reaction rate ratio □ Sample reactivity worth •1 Others	
If You select Others, please	e give a brief description.	
3) Future programme, if You	nave:	

Thank You for your hearty cooperation !!

III. Accelerator-driven Devices used for transmutation

We provide the information form for uranium-plutonium cycle based nuclear rectors here. Then, if You work for thorium-uranium based reactors, please kindly Provide similar form.

(1) Description of Accelerator driven devices:
1) <u>Type of Accelerator</u> :
□ Proton LINAC •1 Electron LINAC □ Others
If you select <u>Others</u> , please give its brief description or illustration here or another white sheet.
2) Particle's energy and current:
 Particle :
3) <u>Type of device</u> :
☐ Subcritical core ☐ Subcritical core with target* ☐ Others *:specificspallation target, such as Pb and W.
If You select <u>Others</u> , please give its brief description or illustration here or another white sheet
4) Neutron spectrum in device:
•! Fast □ Thermal □ Others
5) Thermal and electric powers:
• Thermal power : MWt • Electric power : MWe

6) <u>T</u>	arget and/or	subcritio	<u>cal core d</u>	<u>imension,</u>	and subcrition	cality:	
•	Equivalent d	_	<u>cm</u>	and heigh	nt :	c <u>m</u>	
•	Equivalent s			and heigh	t:	<u>cm</u>	
•	Effective n	eutron mu	ltiplication	factor :			
7) <u>F</u> 1	uel arrangeme	ent in subc	critical co	re:			
•1]	Homogeneous	s arrangemi	net •1 H	eterogeneo	us arrangeme	ent	
In	the case of	<u>Heterogene</u>	eous arrang	gement,			
•	Volume ratio	of fuels	with trans	smutation m	aterials to	all fuels: _	<u>%</u>
8) <u>Ty</u>	pe of fuels	_:					
	Metallic fu Nitride fue				fuel •1 Ox	ide fuel	
If Y	ou select <u>O</u>	thers,pleas	e give bri	ef descrip	tion.		
9) <u>C</u>	ore avearged	fresh fue	1 composit	<u>ion (</u> wt%):			
	U : Pu :	Np,Am,Cm	: long-	-live <u>d FP</u>	= : : :		
10) <u>Is</u>	otopic comp	oosition (w	t%) <u>of Pu,</u>	<u>minor</u> acti	nide(Np,Am,C	m) and long-	lived FP:
66	Pu						
	Pu-238	Pu-239	Pu-240	Pu-241	Pu-242		
•	Minor actini	de (Np,Am,	Cm)	1		1	
	Np-237	Am-241	Am-242	Am-243	Cm-243	Cm-244	

• long-lived fission products (ex.Tc, I etc.)

Tc-99	1-129	Sr-90	Cs-137	

11) Materials and Avarged composition in subcritical core:

	Fuel	Clad+Structure	Coolant	Moderator
Materials				
Ave.composition (vol%)				

121	Type	οf	target
121	1 1 1 1 1 1	OI	target

. Target	materials	and	its	cooling	materials
----------	-----------	-----	-----	---------	-----------

(2) General physics Parameters and transmutat, on capability

1) Principal core & target characteristics:

Items	BOL1)	BOEC ²
Thermal power in core Power density: averaged in core (w/cm³) maximum in core (w/cm³) Linear heat rate: averaged (w/cm) maximum (w/cm) Neutron flux averaged in core (n/cm²·sec) Neutron energy averaged in core (keV) Fuel dwelling time in core (EFPD)* Target dwelling time in core (EFPD)* Burnup reactivity swing (%8k/k/365EFPD)		

^{*:} Equivalent Full Power Day, 1) Beginning of life, 2) Beginning of equilibrium cycle

2) <u>Inventory and transmutation capability:</u>

 \cdot Fuel and transmutation material inventory and their mass balance:

	Initial					
Nucides	inventory (kg)	BOEC ¹⁾ mass	EOEC ²⁾ mass	EOEC-BOEC		
Uranium						
U-235						
U-236						
U-238						
Plutonium						
Pu-238						
Pu-239						
Pu-240						
Pu-241						
Pu-242						
Neptunium						
Np-237						
Amerisium						
AM-241						
Am-242m						
Am-243						
Curium						
Cm-242						
Cm-243						
Cm-244						
Cm-245						
Higher Actinides						
Long-lived FPs						

¹⁾ Beginning Of Equilibrium Cycle, 2) End Of Equilibrium Cycle. Please add isotopes of long-lived FP for transmutation, if necessary.

 Transmutation capability : 	
	tinides between EOEC and BOEC
Transmutation capability = (EFPY*between EOEC	and BOEC) \times thermal power(MWt)
- kg/MWt·EFP	<u>Y</u>
*: Equivalent Full Power Year	·.
(3) Safety-related physics parameters:	
Please fill the table with the values at BOL	
Parameters	Values
Coolant void reactivity effect (%δk/k)	
- All device region voided	
- Core and target voided	
- Only core voided	
Doppler reactivity coefficient (%Tdk/dT)	
Effective delayed neutron fraction	
Beam switching off time (sec)	
Beam equivalent worth (%δk/k/MW)	
Particle beam alignment	
(4) Data and method used in the device design wo	ork:
1) <u>Nuclear data</u> :	
Nuclear data source library or group cro	oss-section library :
•1 ENDF/B •1 JEF •1 JENDL-	•l HILO □Others
•1 ORIGEN □ WINS □ JFS □ CARN	NAVAL- <u>O</u> thers

If You select <u>Others</u> or there are any significant modifications for the original library on minor actinides and long-lived FP isotopes, please give their brief description.
2) <u>Calculation method</u> :
. Neutronic calculation code:
Name of code: Diffusion •1 Transport •1 3D
Number of energy group used for calculation:
· High and medium energy reactions calculation code:
• 1 NMTC/JAERI •1 LAHET • 1 HETC/KFA2 •1 Others
If there are any significant differences between your code and usually used code, please give their brief description.
· Burnup calculation code :
Name of code:
If there are any significant differences in calculat onal model and/or burnup chain model of minor actinides and long-lived FP isotopes, please give their brief description.
(5) Integral experiments related to transmutation:
1) Spallation integral experiment:

 Irradiated minor actinide and target material isotopes: 								
 Purpose of experiments: 1 Measurement of nuclear data in the high energy region □ Verification of spallation codes □ Reaction rate, reaction products, particle energy spectrum, energy deposition □ Others 								
If you select <u>Others</u> , please give their brief description.								
2) Experiment using subcritical assembly:								
• Name of facility: •1 Fast neutron field •1 Thermal neutron field								
· Measured minor actinide and long-lived FP isotopes:								
. Kind of measurements: Reaction rate ratio Others								
If You select Others, please give their brief description.								
3) Future programme, if you have:								

Thank You for your hearty cooperation!!

INFORMATION ON TRANSMUTATION STRATEGIES

Name:	
Affiliation :	
Address:	
Tel:	Fax :
the deep storage (source-t	tation strategies, such as radiotoxicity reduction in term reduction), radiotoxicity reduction at the sphere (long-term risk reduction), mass reduction in others.
☐ in your national pr •1 your own opinion	rogramme •l in your organisation programme

Ι	I.	Your incl	fuel uding	cycle an il	e conce lustra	ept w ition	ith if p	tran possi	smuta .ble.	tion	and	associat	ed pa	rtitior	ning,	
III 					overal fuel o			of :	intro	ducin	ıg pa	rtitionin	ng an	d trans	mutatio	n

Thank you for your hearty cooperation !!