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Abstract

E�ective NN -interaction strength V 0 averaged along the trajectory of
the incident nucleon, for the �rst NN collision, is obtained with re-
spect to both the nuclear density and the �rst NN -collision probability.
Good agreement is found between the average strengths obtained with
the Hartree-Fock potential plus the dispersive component and by us-
ing the parametrization based on the Brueckner-Hartree-Fock nuclear
matter calculations. The nuclear-density dependence of the e�ective
NN interaction may account for the low-energy phenomenological V0
values. The e�ect of using V 0 values within the multistep direct (MSD)
reaction formalism is shown.

1. Introduction

Various semiclassical models and quantum-statistical theories (e.g. [1]) describe the en-
ergy equilibration in nuclear reactions by a sequence of nucleon-nucleon (NN) interactions
leading to particle-hole excitations. A real �nite-range Yukawa potential with a range
parameter r0=1 fm has been thus generally used within the multistep direct (MSD) and
multistep compound (MSC) reaction theory of Feshbach, Kerman, and Koonin (FKK) [2],
and the respective two-body interaction strength V0 has been adjusted to reproduce the
experimental data. This e�ective NN -interaction strength has been �nally the only free
parameter of the FKK calculations. Adoption of a consistent model-parameter set as well
as consideration of several other e�ects were performed whereas discrepancies in the sys-
tematics of the phenomenological V0 values still exist [3,4]. A more realisticNN interaction
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has been suggested in the meantime [4,5], while it is already observed that so-called M3Y
interaction may perhaps not be as good as assumed [6].

In spite of natural prevalence of the theoretical approach taken to obtaining the e�ective
interaction, the empirical one is yet keeping the advantage shown by Austin [7]. A particular
meaning has had the strength renormalization due to the automatical correction of the
uncertainties in the reaction mechanisms. The monotonic decrease of V0 with the projectile
energy has been found consistent with the similar trend of the real part of the nucleon
optical potential, as it is expected from the simple folding model. Thus Cowley et al.
[8] assumed that V0 has the same energy variation as the real optical potential and then
normalized it, at the incident energy of 20 MeV, to the value obtained by Austin from
a survey of the analysis of inelastic proton scattering in the energy range 20-50 MeV
to discrete �nal states [7]. On the other hand, the di�erent behaviour of the actual V0
systematics below 30 MeV might be related to some e�ect which has been neglected untill
now and should be added to the theory [9]. Nevertheless, it seems justi�ed to look again
on the theoretical background of the e�ective interaction, while consideration of features
more signi�cant at lower incident energies could improve the model calculations.

2. Energy dependence of the e�ective-interaction strength

The real part of the optical potential is given within the simple folding model approxi-
mation in terms of the nuclear density and the e�ective NN interaction

V (r) =
Z
dr0 �(r0)v0(jr� r0j) (1)

from where it follows (e.g. [7])

Z
dr v0(r) =

1

A

Z
drV (r) (2)

It results that the strength of an 1 fm range Yukawa interaction is related to the volume
integral per nucleon of the real optical potential by

V0 =
1

4�
JV =A (3)

We have used in this respect the same depth VH of the Hartree-Fock component of the
real optical potential found by Johnson et al. [10] for neutrons on lead in the energy domain
[1,120 MeV], which was involved by Cowley et al. as guidance for the energy dependence
of V0. Thus the Eq. (3) becomes

V0 = 0:727VH(Ei) = 33:7exp[�0:31(Ei � EF )=46:4] (4)

where EF is the Fermi energy de�ned with respect to the zero energy point. Alternatively
one may use also the volume integral for the full real potential JV =A obtained by Johnson
et al. adding the dispersive component to the Hartree-Fock one. The typical low-energy
dependence implied by the use of the optical-potential dispersion relation (DR) yields in
this case the form
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V0 = 32:8� 0:207Ei for 4 < Ei < 40MeV (5)

The predictions of Eqs. (4-5) are compared with various empirical values of V0 from
(n; n0); (p; xn); and (p; xp) reactions in Fig. 1 versus the incident energy. First, one general
comment which should be made concerns the necessity pointed out by recent systematic
studies of the e�ective-interaction strength V0 [3{6,9], including the sensitivity of the re-
spective FKK calculations to the input parameters [3], to carry out such analyses by using
the same standard parameter set over a wide range of the target mass number and incident
energy. The data shown in Fig. 1 satisfy this condition only in part while the additional
dependence of V0 on the target mass [11] and the neutron-proton distinguishability [3,4]
increases the complexity of this �gure. Second, the comparison should be completed with
the formula derived by Cowley et al. [8]

Fig. 1. Comparison of the e�ective NN -in-
teraction strengths as functions of the inci-
dent energy obtained from FKK analyses of
nucleon induced reactions using 1 fm range
Yukawa form factor with the predictions for
the target nucleus 94Nb of the normalized
energy-dependence of the nucleon optical po-
tential obtained by Cowley et al. [8] (dotted
curve), the Hartree-Fock component VH of
the real optical-potential depth (full curve)
and the volume integral per nucleon JV =A of
the full real potential (dashed curve) of John-
son et al. [10]. The points are from: Watan-
abe et al. [3], Demetriou et al. [11], Chad-
wick et al. [12,13], NAC [8,14,15], Scobel et
al. [16], Mordhorst et al. [17], and Austin [7].

V0 ' 30:8exp(�0:15Ei=30:8) (6)

by using the Hartree-Fock component VH of the real optical potential of Johnson et al. [10]
with (i) a correction factor of 3

4
for the gradual energy loss of the incident nucleon in

the subsequent stages of the multistep process, and (ii) a normalization at Ei=20 MeV to
the V0 value found in the DWBA analysis of (p; p0) reaction at 20-50 MeV [7]. However,
the correction factor for the gradual energy loss in the subsequent reaction steps should be
not involved at low energies where the two-step scattering in the MSD process is negligibly
small [12]. It results that the optical-model provisos (4-5) agree with the normalized energy-
dependence of Cowley et al. below e.g. 50 MeV. The low-energy phenomenological V0
values are much more increased in comparison with any predictions, including the additional
dependence on the target-mass and the neutron-proton distinguishability. It is shown in the
following that the nuclear-density dependence of the e�ective NN interaction may account
for this, while other e�ects are avoided by considering only (n; n0) and (p; p0) reactions on
93Nb.
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3. Nuclear-density dependence of e�ective NN interaction

First, Myers [18] described the density dependence of V0 for a given incident energy
by using a phenomenological factor which multiplies the e�ective NN interaction (see also
[19])

fE(�) = C�(Ei)(1� d�2=3) (7)

where d=2 fm2. Bonetti and Colombo [20] have already used this form within FKK calcu-
lations by taking the density-independent parameter C�=1.4 in order to obtain f(�)=1 for
� = 1

3
�0.

Next, Jeukenne et al. [24] showed that Eq. (1) is replaced in the frame of the local
density approximation (LDA, e.g. [21]) by

V (r)

�(r)
=

Z
dr0 v0(r

0) (8)

An immediate result of this relation, for the 1 fm range Yukawa interaction, it is a radial-
dependent strength of the e�ective NN interaction

V0(r; Ei) =
1

4�

V (r)

�(r)
(9)

determined by the real part of the optical model potential (OMP). In the following we
illustrate the case by means of three potentials. The �rst is that obtained by Johnson et al.
[10] with the DR constraint, namely the full potential for Ei �40 MeV and the Hartree-Fock
component at higher energies where the respective volume integrals are similar. The second
is the global OMP of Walter and Guss [22], which was used in the systematic analysis of
Watanabe et al. [3] mainly due to the possibility to provide both neutron and proton optical
potentials in which the asymmetry term has the same magnitude but opposite signs. The
last aspect is speci�c also to the well-known OMP of Becchetti and Greenlees [23] obtained
for energies up to 50 MeV.

On the other hand, Brueckner-Hartree-Fock nuclear-matter calculations performed also
by Jeukenne et al. [24] showed that the contribution of the isoscalar component of the OMP
to the left-hand side of Eq. (8) can be parametrized so that

V (r)

�(r)
� F (Ei) [1� d�2=3(r)] (10)

where d=2.03 fm2 and F (Ei)=(903-7.67Ei+0.022E
2

i ) MeV � fm3, in the energy range [10,140
MeV]. From Eqs. (8-9) we may now obtain another form for the local density-dependent
strength of the 1 fm range Yukawa interaction

V0(r; Ei) =
1

4�
F (Ei) [1� d�2=3(r)] (11)

corresponding to the Myers' expression (7) except the factor C�(Ei) which is normalized
to the parametrization (9). The parametrization of Negele [25] has been used to describe
the realistic nuclear matter distribution. Actually Kobos et al. [19] used a similar method
�rstly but a di�erent radial part of the e�ective interaction as well as an exponential density
dependence.
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4. Average strength of the e�ective NN interaction

The comparison of results of the present analysis with the phenomenological V0 values
requires the derivation of an average strength of the e�ective NN interaction along the
trajectory of the incident nucleon in a complex distorting optical potential. The method
which has been used in this respect has its origin within the geometry-dependent hybrid
(GDH) model of Blann [26] for preequilibrium emission, where l-dependent average Fermi
energies have �rstly been involved. The main point added by us concerns the calculation
of the radial-dependent probability of the �rst two-body collision between the projectile
and one of the target nucleons, and its further consideration to obtain average quantities of
interest for the reaction description. The form of this probability P (r) is given elsewhere
[27] while hereafter are shown the basic assumptions.

We have mainly followed the incoming particle's path in the nuclear target by using
the semiclassical method. The particle curved trajectory as well as the momentum of the
particle at each point of the trajectory, i.e. the NN -collision localization [28,29], can be
considered providing the semiclassical approach is expected to be quantitatively reliable.
The applicability of the semiclassical approximation below 50-100 MeV is yet an open
question. However, there are evidences in this respect [30,31] while Kawai et al. [28,29,32]
pointed out the limits in the correctness of the respective results. On the other hand, we
have obtained a radial dependence P (r) (Fig. 2) which evidences the surface character of
the �rst NN collision and thus supports this approach. The case is illustrated in Fig. 2
for nucleons of 20 MeV incident on 93Nb, by means of global optical parameter sets with
asymmetry terms of the same magnitude but opposite signs for the two kinds of fermions
[22,23]. The widely used potentials of Wilmore and Hodgson [34] and Perey [35] are yet
providing similar shapes, with additional surface peaking due to the pure surface character
of these optical potentials.

Fig. 2. Radial dependence of the
�rst NN -collision probability, for inci-
dent nucleons on 93Nb at the incident en-
ergy of 20 MeV. The OMP parameter
sets of Walter-Guss (WG) [22], Becchetti-
Greenlees (BG) [23], Wilmore-Hodgson
(WH) [34], and Perey [35] are used. The
arrow indicates the value of the half-
density radius [25] of the nuclear matter
density distribution for 93Nb.
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Under these circumstances, the e�ective NN -interaction strength averaged along the
trajectory of the incident nucleon with respect to both the nuclear density and the �rst
NN -collision probability becomes

V 0(Ei) =

R
dr �(r)P (r)V0(r; Ei)R

dr �(r)P (r)
=

R Rs

0
dr r2�(r)P (r)V0(r; Ei)R Rs

0
dr r2�(r)P (r)

(12)

where the integral upper limit is chosen to be equal to the radius Rs=rDA
1=3 + 6aD at

which the surface part of the imaginary potential is one percent of its central depth. The
present formalism makes it possible to integrate over the whole nuclear volume without
any additional assumption on the localization of the �rst NN collision [33].

The average V 0 values for the �rst NN collision corresponding to both the local
strengths of the e�ective NN interaction given by Eq. (11) and the use of the three
OMPs within Eq. (12) for the target nucleus 93Nb are compared in Fig. 3 with the phe-
nomenological V0 values available for the (n; n0) and (p; p0) reactions. The comparison is
done in the energy range of the Walter-Guss OMP. It is meaningful for low energies, due
to the negligibly small two-step contribution to the MSD process. On the other hand that
contribution could justify the correction factor of 3

4
at the high energy limit, increasing the

agreement with data. The V0 values predicted by the optical potential of Johnson et al.
corresponding to Eq. (5) for Ei �40 MeV and Eq.(4) at higher energies, as well as by the
two global parameter sets are shown in Fig. 3(a,d) too. It is obvious the e�ect of taking
into account the density dependence of the e�ective NN interaction. This behaviour is due
to the well-known increase of the e�ective interaction as the nuclear density reduces [18]
and to the increased surface localization of the �rst NN collision at lower energies (Fig.
2).

The V0 values predicted by the optical potential of Johnson et al. are discussed due
to the involvement of this potential within previous analyses. However, the calculation of
the respective average values for the target nucleus 93Nb has been carried out by using the
probability P (r) given by the global parameter sets [22,23], Fig. 3(b,e). It has been done
similarly in the case of the average strengths obtained by using the parametrization based
on the Brueckner-Hartree-Fock nuclear matter calculations [24], shown in Fig. 3(c,f). On
the other hand, it results from the comparison of the V 0-values corresponding to one set
of V0 values but di�erent probabilities P (r), as well as obtained with the same P (r) for
various V0(Ei), that the slope of V 0(Ei) is given mainly by the surface peaking of P (r).
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Fig. 3. The same as in Fig. 1 but for (a-c) (n; n0) and (d-f) (p; p0) reactions, and (a,d)
the V0 and (b,c,e,f) V 0 values given by the optical potentials used also for Figs. 1,2. The
points are from: Watanabe et al. [3] (full triangles and squares), Demetriou et al. [11] (open
triangles), Chadwick et al. [12,13] (open squares, full circles), and Cowley et al. [8] (open
circles).

Large di�erences between the various average V 0 values correspond to the (p; p0) reac-
tions at lower energies. On the other hand, the agreement between the average strengths
obtained with the Hartree-Fock potential plus the dispersive component [10] and by using
the parametrization based on the nuclear matter calculations of Jeukenne et al. is very
good. The underestimation of the absolute V0 values at the lowest incident energies by
the latter approach originates from the similar behaviour at small nuclear density of the
expression F (Ei) �tting the isoscalar real potential (Fig. 1 of [24]).

5. FKK calculations by using average interaction strength V 0(Ei)

The e�ect of the V0(Ei)-value replacement by the average interaction strength V 0(Ei)
within FKK multistep reaction calculations is analyzed in this section for neutron-induced
reactions on the target nucleus 93Nb at four incident energies between 7 and 26 MeV. No
other changes are made in already standard FKK calculations, while the V0 values given
by Eq. (5) following Johnson et al. [10] are involved since the good approximation of the
widely-used formula (6) of Cowley et al. [8].

The �rst trial has concerned the calculated cross sections which could result if the
e�ective-interaction strength V0 is not considered as the only adjustable parameter of the
MSD model but is taken thus just according to the V0 systematics [9]. The one-step MSD
process, known to contribute mainly in the nucleon-induced reactions at incident energies
below 30 MeV, has been estimated by means of the Milano computer code MUDIR [36]
enlarged by inclusion of the spherical optical model code SCAT2 [37]. The usual constant
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single-particle state density g = A=14 MeV�1 is adopted for calculation of the particle-hole
state density in the frame of the Williams formula with additional corrections [38]. The
other parameters used in the MSD/MSC calculations have been summarized elsewhere
[39]. Similarly, the collective enhancement of the direct scattering cross section due to
the low-energy surface vibrations of quadrupole and octupole multipolarity, which is not
described by the FKK model, has been included by means of the DWBA method.
The DWUCK4 code [40] and a conventional collective form-factor have been thus used,
and deformation parameters �L were derived from results of similar macroscopic DWBA
analyses by imposing the condition of equal deformation lengths �L = R�L (where R is the
radius of the respective optical potentials).

Fig. 4. Comparison of calculated (FKK) and experimental angular distributions of neu-
trons from 7, 14.1, 20, and 25.7 MeV neutron-induced reactions on 93Nb. Total cross
sections (solid curves) include contributions of direct collective excitation (long dashed-
dotted), MSD (dotted-dashed) obtained by using the V0 values given by the optical poten-
tial of Johnson et al. [10], MSC (dashed) and statistical r-stage (dotted) processes. For
experimental data see [39].

The MSC emission from particle-hole bound states (Q space) has been described by
the Marcinkowski et al. [41] modi�ed FKK theory for gradual absorption of the reaction

ux through P ! Q transitions at the subsequent stages of the reaction. The MSC cross
sections have been calculated with an enlarged version of the code GAMME [42] including
[43] the optical model code SCAT2. Finally, the code STAPRE-H95 [44,45] is used for the
r-stage and second-chance emission calculations.

The double-di�erential cross-section analysis at intermediate emission energies are gen-
erally used in order to determine or check the strength V0, as it was also the case of our
previous analyses [33,39]. Actually, at the incident energy of 7 MeV the MSD contribution
is at most one order of magnitude smaller, while it accounts for nearly all emission cross
section at incident energies of 20 and 25.7 MeV. However, the lower V0 values of Eq. (5)
used now at this point are leading to underestimated cross sections especially for these
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higher incident energies (Fig. 4). The change at various incident energies of the MSD
and MSC calculated cross sections has been checked also by analyzing the angle-integrated
spectra for neutron emission at the four incident energies (Fig. 6).

The calculated cross sections by using average interaction strengths V 0(Ei) are shown
in Fig. 5 and the right side of Fig. 6. These results are actually obtained without any
free model parameter. The average V 0 values for the �rst NN collision are especially
justifyed as only one-step MSD processes are involved. These V 0 values, shown by the
short-dashed curves in Fig. 3(b), correspond to (i) the local strengths of the e�ective NN
interaction given by Eq. (9) and the same optical potential of Johnson et al. [10], and
(ii) the probability P (r) given by the global OMP parameter set of Walter and Guss [22].
The latter choice is recommended by the good overall description of the neutron-induced
reactions on 93Nb [3,39] in this energy range.

Figures 5 and 6 show a good agreement between the experimental data the FKK results
obtained by using the V 0(Ei) values, i.e. carried out without free parameters. It is con-
cludent mainly for the MSD component. The MSC processes have already no contribution
above the emission energy of 10 MeV, at the incident energies of 20 and 25.7 MeV, so that
the intermediate-energy region of respective spectra is given fully by the MSD cross section.

Fig. 5. The same as in Fig. 3, for the use in the FKK calculations of the average V 0

values for the �rst NN collision, corresponding to the local strengths of the e�ective NN
interaction given by the use of the optical potential of Johnson et al. [10] and the probability
P (r) given by the global OMP parameter set of Walter-Guss [22].
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Fig. 6. Comparison of the calcu-
lated (FKK) and experimental angle-
integrated spectra for 93Nb(n; n0) at
7, 14.1, 20, and 25.7 MeV. Calcula-
tions are carried out by using (i) the
V0 values given by optical potential
of Johnson et al. [10] (left side), and
(ii) the average V 0 values for the �rst
NN collision, corresponding to the lo-
cal strengths of the e�ective NN in-
teraction from the optical potential of
Johnson et al. [10] and the probability
P (r) given by the global OMP param-
eter set of Walter-Guss [22]. The curve
meaning is the same as in Fig. 5, with
addition of the main sequential-decay
cross sections (dotted curves). For ex-
perimental data see [39].

6. Conclusions and future work

This work has shown that nuclear-density dependence of the e�ective NN interaction
may account for the low-energy phenomenological V0 values. It may provide the higher
strength values which are requested in order to obtain the agreement between the FKK
multistep reaction theory and the experimental data, with no free model parameter.

This makes also possible investigaton of other e�ects which have been yet neglected [9].
The study should be completed by taking into account (i) the whole emission of neutrons
and protons, (ii) at all emission energies and angles, (iii) for a number of incident energies,
and (iv) for target nuclei of di�erent asymmetry (N�Z)=A since the MSC process becomes
more important for (n; p) reactions on nuclei of lower asymmetry.
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