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Abstract

Some improvements in ECIS88 like the use of expansion of the poten-
tials in term of Bessel functions lead to ECIS94 and to write the Notes

on ECIS94 before I had to retire on the 1/9/1994. However, on the sug-
gestion of Arjan Koning, the code was modi�ed to deal with continuum
for compound nucleus calculations. This point, existing in ABAREX was
not in ANLECIS. Now, ECIS95 should do the same kind of computation
as ABAREX, but in the Coupled Channel formalism. Further work has
been done this year by introducing energy dependent potentials de�ned
by Mahaux' dispersion relations. This required more changes than the
previous step and gives ECIS96. Some other additions should be done
for experiments with exotic beams. Such beams are usually produced
by extraction at 0 degrees after a reaction, which produces tensor po-
larisations very large for exotic nuclei with high spins. There are tensor
polarisation e�ects on the total scattering cross-sections and on the total
cross-section, even if they are generally too small to be measured.

1 Introduction.

The name ECIS (\Equations Coupl�ees en It�erations S�equentielles") was intro-
duced for an attempt to solve Coupled Channels problems with less computa-
tion [1]. Its principle is to obtain the few solutions needed in the application
without handling all the solutions of the system of equations. The main appli-
cation at that time was deformed spin-orbit interaction [2], which introduces
�rst derivatives in the non diagonal part of the system of equations [3]. The
presence of these �rst derivatives need numerical method far more lengthy
than the usual way of solving Coupled Channels equations whereas the time
needed by ECIS does not increase signi�cantly. Of course, the usual method is
also present in the code. The last version at this stage was ECIS75.

Application to heavy ions scattering needs long range integration because
the Coulomb form factor for a multipole L decreases as r�L�1 and important
e�ects are found at large total angular momentum. The solution introduced
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in ECIS [4] was to use DWBA results from a nuclear matching point to in�nity,
this matching point being chosen such that results does not depend upon it.
Above some total angular momentum, J , the resolution of the radial equations
is replaced by analytical integrals between zero and in�nity of products of
regular Coulomb functions with r�L�1 [5, 6]. The versions of this stage, as
ECIS79 can handle all the problems previously solved by the method.

Trying to avoid energy dependence for fast proton scattering, some people
began to use a Dirac potential [7] for elastic scattering. There is no reason
that the Dirac potential should not be treated like Schr�odinger potential to
describe inelastic scattering. Usual methods to solve Coupled Channels equa-
tions are quite heavy; the ECIS method is quite similar to the Schr�odinger case.
Therefore, the use of Dirac potentials has been introduced in ECIS88 [8, 9],
but limited to scattering of particles with spin 1

2
and computation using the

iteration method. The method used previously for heavy ions allows to obtain
correct results, using non relativistic Coulomb functions. Such problems are
not limited to charged particles: for neutrons, they appears when the inter-
action of the anomalous magnetic moment with the Coulomb �eld is taken
into account to describe the polarisation in the elastic scattering. Meantime,
at Argonne National Laboratory, P. Moldauer developed the code ANLECIS,
starting from ECIS79, to study e�ects of direct interactions on compound nu-
cleus results; this work was incorporated in ECIS88. Note that compound
nucleus calculations need all the solutions and that there is no more an ev-
ident advantage of the iteration method if the spin orbit interaction is not
deformed.

Some improvements as use of expansion of potentials in term of Bessel
functions lead to ECIS94 and to write the Notes on ECIS94 [10] before I had
to retire on the 1/9/1994.

However, on the suggestion of Arjan Koning, the code was modi�ed to
deal with continuum for compound nucleus calculations. This point, existing
in ABAREX was not in ANLECIS. Now, ECIS95 should do the same kind of
computation as ABAREX, but in the Coupled Channel formalism. Further work
has been done this year by introducing energy dependent potentials de�ned
by Mahaux' dispersion relations [11]. This required more changes than the
previous step and gives ECIS96.

Some other additions should be done for experiments with exotic beams.
Such beams are usually produced by extraction at 0 degrees after a reaction,
which produces tensor polarisations very large for exotic nuclei with high spins.
There are tensor polarisation e�ects on the total scattering cross-sections and
on the total cross-section, even if they are generally too small to be measured.
Angular distributions can be obtained with ECIS since a long time, but there
is no precise computation of total values (integrated over the angles).

2 Dispersion relations for the potential.

The code ECIS96 can deal with more than one nuclear potential. Using the
notations of Mahaux and Sartor [11], each of these potentials includes :
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� a real potential VHF (r), considered as independent on energy by the
code, including a volume and a surface term, with Woods-Saxon form
factors, usual or \symmetrised",

� an imaginary potential W (r;E), dependent on energy, including a vol-
ume and a surface term like the real potential, but with a geometry which
can be di�erent, de�ned from E = �1 to E = 1 and symmetric with
respect to the Fermi energy EF ,

� the real potential �V (r;E), dispersive contribution related to the imag-
inary potential W (r; E) by :

�V (r; E) = (E � EF )�
�1
Z 1

�1

W (r; E 0)

(E 0 � E)(E 0 � EF )
dE 0 (1)

where EF is the Fermi energy.

The volume imaginary potential at the energy E in the center of mass
system is assumed to be :

WV (r; E) = fv(r)Wv

(E � EF )
nv

(E � EF )nv + bnvv
(2)

where fv(r) is the volume form factor,nv is some even integer (usually 2) and
bv some constant. The surface imaginary potential is assumed to be similar,
but multiplied by a damping factor :

WS(r; E) = fs(r)Ws

(E � EF )
nse�cjE�EF j�r(E�EF )

(E � EF )ns + bnss
(3)

where fs(r) is the surface form factor, ns and bs are parameters similar to those
of the volume imaginary potential, the parameter c introduces an exponential
decrease of the surface potential and r is a non-locality range parameter, in-
verse of the parameter Eb de�ned in equations (3.17) and (3.18) of Ref. [11].

The code can handle Dirac potentials. In that case, the volume and surface
potentials are replaced by the scalar and the vector potentials. There is no
prohibition to use dispersion relations but scalar and vector potentials are
treated as the volume part of the Schr�odinger potential.

After each potential, must be given :

� nv power for volume or scalar potential (if 0, dispersion relations are
not used for this form factor),

� ns power for surface or tensor potential (if 0, dispersion relations are
not used for this form factor),

� E0 reference energy in the center of mass system, that is the energy
at which the depths have the values read with the geometry of the form
factor (if 0, it is the energy of the �rst level using this potential),

� EF Fermi energy, around which the energy dependence is symmetric (if
0, the value used is -6.8 MeV),
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� bv constant for volume or scalar potential,

� bs constant for surface or tensor potential,

� c constant of the exponential decrease of a surface potential,

� r non-locality range parameter for which the default value 0.0125 is not
in the code to allow to use 0.

For each level, the strengths of the real and the imaginary surface and
volume potentials are computed and divided by the strength of the imaginary
potential at the reference energy. One (1.) is subtracted to the imaginary
strengths. These four numbers, which are printed, are the corrections due to
dispersion relations to the form factors. There is the possibility to correct also
the transition form-factors, using the mean value of the corrections of the two
levels between which they act.

Up to now, it was possible to use a di�erent potential for each level. How-
ever, for compound nucleus, many uncoupled states can be involved in the
calculation. Up to ECIS94 a potential could be used for each of them, but it is
no more possible with ECIS95 in which many levels are introduced by the code
to take into account a continuum. It is chie
y to describe compound nucleus
continuum that dispersion relations have been introduced in the code, because
they should a�ect strongly results near threshold.

3 Evaluation of the integrals.

For a surface potential, using U = E 0�EF and F = E�EF , the integral given
by Equ (1) and Equ (3) is for n even :

F

�

Z 1

�1

Un�1e�cjU j�rU

(Un + bn)(U � F )
dU =

F

�

Z 1

0

Un�1e�(c+r)U

(Un + bn)(U � F )
dU � F

�

Z 1

0

Un�1e�(c�r)U

(Un + bn)(U + F )
dU (4)

and the same expression without exponential for a volume potential. First of
all, the integrand must be replaced by its expression in terms of poles and
residues :

F

�

Un�1

(Un + bn)(U � F )
=

1

�

j=nX
j=1

rj
U � pj

+
1

�

F n

F n + bn
1

U � F
(5)

where the pj are the n zeros of (Un + bn) and the rj their residue, that is :

pj = b ei
(2j�1)

n
�; rj =

F

n

1

pj � F
(6)

For even values of n, these poles are all complex numbers, complex conjugate
two by two. Besides these n poles, there is a real pole in each part of the
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second member of Equ (4). The contribution of a pole is :

Z 1

0

rj
U � pj

e�(c�r)UdU = rj e
�(c�r)pj

Z 1

�(c�r)pj

e�z

z
dz = rj e

�(c�r)pjE1(�(c�r)pj)
(7)

where E1(z) is the Exponential Integral Function[12]. This function can be
obtained using the series expansion given by Equ(5.1.11) of Ref. [12], which
is :

E1(z) = �
 � ln z �
1X
n=1

(�z)n
n!n

(8)

where 
 = :57721566490153 is the Euler number. This has to be done for the
n=2 complex poles in the upper plane, duplicating the real part of the result.
This formula is assumed to be always good because the variable z is equal to
b multiplied by a small number. For the real pole situated at �(E � EF ), the
series expansion is used only for �30 < z < 10. Outside this domain (for large
values of E), the continued fraction given by Equ(5.1.22) of Ref. [12], which
is :

E1(z) = e�z
� 1

z+

1

1+

1

z+

2

1+

2

z+
: : :
�

(9)

gives easily the result.
The complex poles are independent of E, but their contribution is multi-

plied by a function of E. So, the whole calculation is done at each energy.
For the volume form-factor, there is no exponential. The real pole does not

contribute. A complex pole at pj gives a contribution of i� with the sign of
imaginary part of pj.

4 An example.

Let us consider the elastic scattering of 3.0 MeV neutrons on 184W described
in the rotational model with R�2 = 1:49781, R�4 = �:4013 and consider
only a compound nucleus neutron continuum starting at zero energy. The
real potential is described by a volume form factor with Vv = 46:0 MeV,
rv = 1:26 fermi and av = :63 fermi; there is a spin orbit potential with the
same geometry and a strength VLS = 6:0 MeV. The imaginary potential is
a volume form factor with the same geometry and the strength Wv = :33
MeV and a surface form factor with Ws = 6:0 MeV, rv = 1:28 fermi and
av = :47 fermi. The level density in the continuum is described by a Gilbert
and Cameron formula [13] with 20:69 as level density parameter for S-wave
resonance spacing, 4:62 as matching energy for the two density formula shifted
by pairing energy, :53 as nuclear temperature, 5:3 as spin cut{o� parameter
and �:15 as energy shift. For the dispersion relations, the Fermi energy is
�6:8 MeV, the powers are nv = ns = 2, the constants are bv = 63: MeV and
bs = 15:5 MeV, the coe�cient of exponential decrease of the surface potential
is c = :036 and there is no non{locality range parameter.

On Figure 1a) are presented the coe�cients of the real and the imaginary,
volume and surface potentials. These coe�cients multiply the form factors of
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Figure 1: a) Coe�cients of the correction to the potentials coming from dispersion : the curves are
respectively the multiplicative factor of the volume imaginary potential (full line), the real volume potential
divided by 10 (dotted line),the multiplicative factor of the surface imaginary potential (dashed line) and the
real surface potential (mixed line). b) Comparison of results obtained with ECIS96 (full line) and two options
of ECIS95 for a simple model calculation taking into account only elastic scattering, and this continuum of
compound nucleus: use for the continuum of the potential of elastic scattering (dotted line) and of the
maximum of these curves (mixed line).

the imaginary potential which include already the depths, :33 MeV and 6:0
MeV respectively. For convenience, the coe�cient of the real volume poten-
tial has been divided by 10:; due to the smallness of the volume imaginary
potential, it introduce corrections of the order of 2:0 MeV.

On Figure 1b) are presented results of the calculation as a function of the
energy of the outgoing particles :

� the full curve is the result obtained with dispersion relations,

� the dotted curve is the result obtained with the potential used for the
elastic scattering (including real dispersive potential) at all the energies,

� the dashed curve is the result obtained by using for the continuum the
potential which was used at the maximum of the full curve, that is at
E = :555 MeV.

5 Use of exotic beams.

Beams of excited particles are generally obtained by accelerating the product of
a reaction outgoing at 0 degrees. Such a beam has strong tensor polarisations
and there are consequences in the reactions studied with it [14].

If a beam of particles with spin 2+ is produced by scattering � on a nucleus
with spin 0+, this beam is a pure states of particle with helicity 0 along the
direction of the beam. Its polarisation is described by some parameters t�;�,

6



which are, in the more general case of a beam of integer spin S :

t�;� = (�)S p2S + 1 < S S 0 0j�� > (10)

where < : : : j : : : > is a Clebsch-Gordan coe�cient which shows that the po-
larisation parameters are limited to those with � = 0 and � even. For a beam

of particles with spin 2+, these parameters are t20 = �
q
10=7 = �1:19522851

and t40 =
q
18=7 = 1:60356734. Limits of variations of this kind of param-

eter depend on the spin: for S = 1, �p2 < t20 <
q
1=2 but for S = 2,

�
q
10=7 < t20 <

q
10=7 and �

q
8=7 < t40 <

q
20=7.
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Figure 2: Elastic scattering an inelastic scattering of protons on a 2+ : unpolarised cross section (full
line) and cross section on a 2+ obtained by spinless forward scattering (dotted line);the dashed line and the
mixed line are respectively the same results with a change of sign of the deformations.
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To show the consequences, let us consider the scattering of 20 MeV protons
on the 0+� 2+� 4+ states of 184W described by the rotational model with the
same deformations as before. There is a volume central potential Vv = 46:0
MeV,Wv = 8:0 MeV with the geometry already used for neutrons and the same
spin-orbit potential. The parameters t20 and t40 describing the polarisation of
the 2+ residual nucleus have the values given above at 0 degrees with a shift
of less than :03 at 5 degrees. All the other parameters vanish when summed
up on all directions around the incident beam.If protons are scattered on the
2+ beam obtained in these conditions, the cross section is :

d�

d

(�) =

d�

d

(�)n:p:[1 + t20T 20(�) + t40T 40(�)] (11)

where d�
d

(�)n:p: is the cross-section for an unpolarised incident beam, T 20(�)

and T 40(�) are the description of the polarisation of the outgoing beam in the
inverse reaction. In particular, if the �nal state is the 0+, T 20(0) = t20 and
T 40(0) = t40 and the cross-section at 0 degrees (also at 180 degrees) is �ve
times the unpolarised cross-section.

Figure 2 shows the cross-sections obtained in this 2+�0+�4+ calculation,
the corresponding unpolarised cross sections and the same results obtained
with a change of sign of all the deformations. It can be seen that e�ects are
quite small on the elastic scattering, large for the 4+ and tremendous for the
0+.

If the exotic beam of spin Sf is produced by scattering of particle with
spin si on a target of spin Si with a �nal particle of spin sf , the helicity of the
beam is limited by jmmaxj � si + Si + sf and the non vanishing polarisation
parameters t�0 for even values of 0 < � � 2Sf are restricted by the relations :

2SfX
�=2

< Sf Sf m �mj� 0 > t�0 = �1 (12)

for all values m > mmax. On another side, if the production of the beam
is obtained by a transfer characterised by some �S, �L and �J , a DWBA

calculation gives t�0 for � > 2�L or � > 2�J . Coupled channel calculations
give non zero but small values for these large �'s. With Si 6= 0 and si + sf
small, the description of the exotic beam can be complete.

Such cross sections are treated by ECIS as polarisations : the output prints
only their ratio to the unpolarised cross-section and only this ratio can be
given as experimental data. Their description can be given by the t�� (taking
into account t00 = 1:) or by the values of the elements of the density matrix.
A precise value of the integrated e�ect of the t�� an elastic, inelastic or the
total reaction cross section is not computed : such e�ect exists for � = 0 and
even values of �.

6 Conclusions.

Since ECIS94, the main modi�cation of the code is the introduction of the
continuum for compound nucleus, which is quite independent of the original
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purpose of the programme. The introduction of dispersion relations for the
potential showed very important e�ects for this problem but needed a deep
rewriting of subroutines. Some other changes have been done at the same
time :

� for identical particle and target with non-zero spin, the symmetrised
equations are solved instead of the symmetrisation of the results; the
previous approach was not compatible with compound nucleus (but in
which case should a compound nucleus be formed from an identical par-
ticle and target?),

� a maximum J-value has been introduced for compound nucleus cal-
culation with a test which stops the calculation when contributions are
smaller than �2 (direct interaction is stopped when contributions are less
than �),

� computation of compound nucleus angular distribution go back to the
usual method via Legendre polynomials instead of the helicity formal-
ism used before; the products of a 3-jcoe�cient and two 6-j coe�cients
needed in the most general case for the initial and for the �nal channel
are computed by recurrence.

The topic of exotic beams shows that useful features were already in ECIS75

but new features which are not in ECIS96 can be needed.

I want to thank the \Service de Physique Nucl�eaire" of the \Centre d'�Etudes
de Bruy�eres-le-Châtel" and \Service de Physique Th�eorique" of the \Centre
d'�Etudes de Saclay" which gave me the possibility to continue my activities.
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