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Abstract

Transit time in a boiling water reactor is estimated using two methods: the displacement
of the cross-correlation peak and the phase shift of the cross power spectral density.
It has been observed that the transit time inferred from axially displaced neutron detectors
does not satisfy a strict additive relationship. To see changes of the intensity of the void
fraction fluctuations along the channel, we used a model based on the bimodal
approximation in two-phase flows. A binormal fit of the probability density function (pdf) has
also been performed.



Introduction

An important task of boiling water reactor (BWR) studies is a detailed description
of the coolant flow condition in individual fuel bundles. When the coolant is a two-phase
mixture of liquid and vapour, the coolant flow pattern can become quite complicated.
In vertical two-phase flows, the following basic flow regimes can be defined: bubbly, slug,
churn and annular.

A transit time can be associated with the axial propagation of the coolant density
fluctuations. The measurement technique for transit time by means of cross-correlation
of the signals (randomly time varying boiling noise pattern) of two axially displaced neutron
detectors has been applied [1,2]. Both detectors are affected by the travelling disturbance,
but the down stream signal is shifted with a time delay which is equal to the time
for the disturbance to travel from the upstream detector to the down stream detector.
A peak occurs in the cross-correlation function at the transit time r of the travelling
disturbance. This is due to the definition:
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The determination of the delay time between the two signals may also be performed
in the frequency domain. The mathematically equivalent function is then the cross power
spectral density (CPSD). The transit time in this case is given by the linear slope
of the phase of this complex function:
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where θ is the phase angle. The coherence function γ2(f) of two quantities x(t) and y(t)
is defined as:
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As this ordinary coherence function measures the extent to which y(t) may be predicted
from x(t), in order to obtain an estimate of how the signal pattern changes between the two
detectors, the coherence function was used.

The local power range monitors (LPRM) data have been represented
by the corresponding probability density function (pdf). This function is the relative density
with which the value x appears in the collection of data, and is an estimate of the rate
of change of probability with magnitude [2].



The square of the root mean square RMS2, which is the variance of the signal
fluctuation, was calculated over an entire band between frequencies f1 and f2 as follows:
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It should be noted here that estimation of time delay by means of cross-correlation
analysis is an established technique, if the quality of the observed signals is reasonably
good. In our analysis with signals measured at a BWR, the measured variable is neutron
fluctuation. Because of experimental limitations we can not install ordinary flow monitors
(optical, impedance, etc.) inside the reactor. The neutronic signal can be disturbed not only
by bubbles in the coolant flow but also by other quantities, e.g. temperature nonuniformity,
flow regime, flow distribution within the coolant channel, etc. Detailed treatment of the
fluctuations is needed in this regard.

Methodology

The data were taken from a 900MW BWR nuclear power plant at Forsmark I, Sweden.
The measurement conditions were: reactor power: 64%, core flow: 4220 Kg/sec, Fs = 5 Hz.
LPRM D, LPRM C, LPRM B and LPRM A are in the same string; LPRM D is in the top
of the core, as is shown in Figure 1.

Figure 1. Reactor core and detector string

In general, an in-core detector will see the sum of local and global effects. With this
in mind, we introduced a simple pre-processing of the signal. From each detector signal
we subtracted the average of the four detectors in one string to remove global noise
component. This analysis is denoted as ‘case (b)’, while the evaluations using the original
time series are marked as ‘case (a)’.

For a given frequency range the coherence values were taken from:
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The phase angle was calculated in a frequency range corresponding to coherence values
greater than 0.4.

For the calculation of the pdf of each signal, we took the half data points
at the beginning and at the last, for a better comparison. Bubbly and annular flows have
unimodal character, i.e. their pdf is single-peaked. Slug flows are classified as bimodal
and they have pdf with two peaks. The modality of the flows is related to the moments
of the pdf. This relation has been investigated [3] in order to develop an objective flow
regime indicator. The assumption concerning spatial and temporal independence
of bubbles is definitely not valid in slug flows, due to the presence of a well-defined spatial
and temporal correlation in the void fraction fluctuation signal. Part of the difficulties can
be solved by introducing a modified binomial model in which certain time-correlations
are incorporated. The modified model is based on the bimodal approximation of void
fraction fluctuations in two-phase flows [4]. We used this model in order to see changes
of the intensity of the void fractions fluctuations along the channel. The bimodal two-phase
flow model is determined by the following set of parameters: µ1, µ2, σ1

2  and σ2
2  which are

the expected values and variance of the first and second mode respectively. The variance
of the bimodal mixture is the sum of weighted variances of the separate modes and
an additional term, which depends on the difference between the expected values
of the two modes and on their relative frequency of occurrence. In order to develop
an objective indicator, eliminating the characteristic constant and the background of each
detector, we calculate:
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Based on this much-simplified model, in a meaningful range, z is a two-phase flow structure
parameter. It contains information about the maximum possible number of bubbles
in the sensitivity volume of the detector and it is a function of the void fraction of the
two modes [4].

Observations

In Figure 2 and Figure 3 the coherence and phase between two LPRM are given
for case (a) without subtraction, on the left side, and case (b) on the right side.
When applying case (b) we get a better linearity in the phase, mainly at frequencies higher
than 1 Hz. Also the frequency band of coherence values higher than 0.4 is larger.
While approaching the bottom of the core, the phase is not linear (it has some peculiar
fluctuations) and the coherence values are lower than 0.4 Hz. In Figure 3 the phase
between LPRM B and LPRM D shows two different and well-defined slopes.
For both cases, and between all the LPRM, the calculation and analysis clearly show that
a core resonance phenomenon leads to oscillations at 0.5 Hz which are representative
of the well-known BRW stability problem [5].



Figure 2. Coherence and phase for LPRM C and D

Figure 3. Coherence and phase for LPRM B and D

Table 1 shows the obtained time delay for different frequency bands, taking into
account the coherence values. From this table, we can see that the correspondent results
for both cases significantly differ for frequencies higher than 1 Hz.

Table 1. Time delay for LPRM D and LPRM C

Freq. Band (Hz) Coherence T (sec)

Case (a) Case (b) Case (a) Case (b) Case (a) Case (b)

0 : 0.63 0: 0.35 0.867 0.683 0.37 0.31

0.63 : 1.1 0.35 : 1.2 0.695 0.729 0.51 0.44

1.1 : 1.4 1.2 : 2.1 0.430 0.495 0.65 0.36

Table 2 summarises the calculation on the four detectors using the phase angle and
the cross-correlation. In the first method, we took the mean weighted by both the frequency
band and the coherence values along all the frequencies to compare these values with
those obtained from the latter one. Only in case (b), we could calculate the time delay using
the displacement of the cross-correlation peak.



Table 2. Time delay calculation on the 4 LPRM

Signal Phase Case (a) Phase Case (b) Cross-Correlation
LPRM Mean Mean Case (b)

C and D 0.48 0.376 0.2
B and C 0.411 0.417 0.4
B and D – 0.900 0.8
A and B 0.740 0.345 0.4
A and C – 0.75 1.0
A and D – 0.610 1.4

The results obtained applying the displacement of the cross-correlation peak do not
fulfil the additivity of the transit time. Additivity means:

T T T12 23 13+ =

where T12 is the transit time measured between detectors 1 and 2 in the same string.
The best approximation for the additivity of the transit time is observed at frequencies
higher than 1 Hz or below 0.4 Hz.

Table 3 shows the time delay along the channel using the phase shift of the CPSD
for case (b).

Table 3. Time delay along the channel

Signal Freq. 0.1 Hz : 0.4 Hz Freq. 0.6 Hz : 1 Hz Freq. 0 : 2 Hz
LPRM DC 0.314 0.435 0.376
LPRM CB 0.404 0.404 0.417
LPRM DB 0.759 1.410 0.900

The RMS2 has been determined over various frequency regions according to [5].
The results, which are shown in Table 4, significantly vary for different frequency regions.
At low frequencies there is an increase in the RMS2 while at high frequency range
a decrease is observed.

Table 4. RMS2 over various frequency regions

F (Hz) LPRM D LPRM C LPRM B LPRM A
0 : 0.19 2.89 2.96 8.70 18.97

0.19 : 0.78 102.87 103.09 97.50 88.59
0.78 : 2.46 7.73 7.39 7.27 5.34

0 : 2.46 113.49 113.44 113.47 112.90

In Figure 4, the result of binormal fit of the pdf of LPRM D is shown. Crosses denote
points of the calculated pdf having 50 channels; solid line shows the binormal fit and
punctuated lines indicate the two Gaussian component of the fit.



Similar fit has been performed for the other three LPRM and the results are
summarised in Table 5. Here, the expected values and the variances in each mode change
for different signals, and also between the first and last data points. Also, the parameter z
exhibits a systematic change as a function of LPRM position.

Figure 4. Results of the binormal fit of the pdf for LPRM D

Table 5. Gaussian fitting of the four LPRM

From pdf (1 : 2940) From pdf (2941 : 5880)
LPRM µ1 µ2 σ1 σ2 z µ1 µ2 σ1 σ2 z

D 0.4 -0.6 0.8 0.8 17 0.7 -0.3 0.8 0.8 16
C 0.3 -0.5 0.8 0.8 11 0.6 -0.4 0.8 0.8 12
B 0.6 -0.5 0.9 0.7 8 0.5 -0.4 0.9 0.7 7
A 0.6 -0.3 1 0.8 2 0.3 -0.5 0.9 0.7 3

Discussion

Due to the removal of the low frequency global noise, the frequency band of high
coherence values greater than 0.4 increases. This effect also permits a better resolution
in the linearity of the phase. Between LPRM D and LPRM A, due to the large spacing,
the hydraulic turbulence and additional void generation practically wipe out bubble patterns
over this distance. The mechanism responsible for the interesting fluctuations in the phase
while approaching to the bottom of the core can not be explained at this point. Possibly due
to the fact that LPRM signals oscillate in phase throughout the core and the strongest
oscillation is found in the environment of 9x9 fuel (correspondent to the measured
string) [5], the phase between LPRM D and LPRM B shows two different slopes.
The decreasing of the RMS2 at high frequencies (from the top to the bottom) can
be understood on the basis of the bimodal two-phase flow model, where the RMS2 at high
frequencies is proportional to the void fraction [6]. In the framework of the study, at this
point, it is difficult to find a reason to explain the changes of the expected values and
the variances obtained from the bimodal fit for different signals and also between the first
and last data point. Concerning the change of the parameter z along the channel, certainly,
it depends on both the number of bubbles and the structure of the flow. For a better
understanding of this parameter more study is needed.



Conclusions

The results obtained applying the displacement of the cross-correlation peak do not
fulfil the additivity of the transit time. The best approximation for this additivity was obtained
applying the coherence based frequency analysis of the phase shift of the CPSD.
When the measured variable is neutron fluctuation, it is better to calculate the transit time
for different frequencies, according to high coherence values, in order to get more reliable
results. In our calculation, when the signal was pre-processed by removing the global noise
component, the results were improved.
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