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ABSTRACT

Systematic parameter survey calculations were
performed to investigate basic characteristics
(burnup reactivity loss, Doppler coefficient,
sodium void reactivity , control rod worth ,
power distribution, transmutation rate, breeding
ratio etc.) of an LMFBR core loaded with minor
actinide  (MA) fuels which contain rare earths
(RE) and a}so to establish MA and RE loading
method which has no serious influence on core
design. It was found that the homogeneous
loading of MA and RE has no serious penalties
to the reactor core performance , provided that
the amount of MA and RE in the fuel is less
than 5 and 10wtYo, respectively.

1. INTRODUCTION

While it is essential to consider all actinide
containing wastes in a total actinide recycling
scheme, the high-level waste(HLW) certainly
presents the most difficult partitioning problem.

Especially, separation of the trivalent minor
actinides (Am, Cm, and higher

k
roducts) from

rare earths (RE)  is notoriously di lcult.  Several
methods have been successfully applied to
isolating an actinides/RE  fraction from the
HLW. Although feasibility studies of MA
transmutation have been implemented to
establish MA transmutation technology by
LMFBRs 1-6, it is necessary to investigate the
impact of maximum tolerable amount of RE in
minor actinide(MA)  containing fuels from a
viewpoint of core performance to establish MA
transmutation technology in consideration of
the total MA recycling system.

In the present study, systematic parameter
survey calculations were implemented to
investigate basic characteristics (burnup
reactivity loss, Doppler coefficient, sodium void
reactivity, control rod worth, power distribution,
transmutation rate, breeding ratio etc.) of
LMFBR cores loaded with MA fuels which
contain RE and also to establish MA and RE
loading method which has no serious influence
on core design.

2. CALCULATIONAL METHOD

A 1000MWe homogeneous core with two
enrichment zones was employed as a reference
core. The main specifications of the reference
core of MOX fuel are shown in Table 1.

The following items are selected as
parameters;

(1) Content of MA in fuel and blanket: O - 20%

(2) Content of RE in fuel and blanket: O - 30%

(3) Fuel materials : oxide and nitride

(4) coen~guration of MA and RE containing
: homogeneous loading method that

MA and RE fuels are dispersed uniformly
throughout the core, MA and RE loading
method in the axial andlor radial blanket.

When adding MA and RE in the core, these
new isotopes were homogeneously distributed
all over the fuel , in replacement of heavy
nuclides of uranium and plutonium . The fuel
enrichment in PUOZ was adjusted to get the
same cycle length and overall fuel residence
time and the same reactivity at the end of
equilibrium core.

Ten nuclides  of RE which have effect on
core performance were selected in the study as
shown in Table 2.

The nuclear characteristics of RE- loaded
core were calculated by a burnup code on two-
d imensional  RZ geometr ies . Burnup
characteristics, power distribution and reactivity
coefficients were obtained from the analyses.
Cross sections were collapsed from JFS-3-J2
library 7 based on JENDL-2 8. Seven-group
effective cross sections were used in the
calculation of burnup characteristics and power
distribution. Reactivity coefficients were
calculated using 18-group effective cross
sections.
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The core confirmations of the reference
core of MOX and ni~ride are shown in Fig. 1.

Table 1 Main Design Parameters of the 1000MWe

Reference LMFBR

Design Parameters Data

I. Plant Parameters
Reactor Thermal Power 2517 tvlVVt

Coolant Temperature 530/ 375”c

(ReactorOut let / in le t )

Operation Cycle Length 15 Months

2. Core parameters

Core Concept 2-region Homogeneous

Average Fuel Burnup 91 GWDIT

Max. Linear Heat Rate 430 wlcm
Core  Diameter/Core Height 3.6 B/l.00 m

Thickness of Axial Blanket 0.20/0.20 m

(Upper/Lower)

3. Core fuel parameters

Fuel  Composition Puo#Jo2

.Pu  Isotope Ratio 5812411414

(239/240/241/242) (LWR Discharged)

Pattern of Fuel Exchange 3 Dispersed Batches

!. Blanket fuel parameters

Fuel Composition U02

U Isotope Ratio (235/ 238) 0.3/ 99.7

Pattern of Fuel Exchange 4 Dispersed Batches

Table 2 One-Grouped Absorption Cross Section
and Mass of Selected Rare Earth
Nuclides  in Spent Fuel

E
Absorption

Cross Mass
Nuclides

Section (g/t)
(barns)

153EU 2.16 187

145Nd 0.32 1043

143Nd 0.29 1103

141pr 0.15 1827

144Nd 0.09 2315

154E” 2.58 62

150~m 0.39 406

1 4 6N d 0.12 1207

147~m 0.77 161

14s~m 0.33 330

3. RESULTS AND DISCUSSION

3-1. MOX Fuel Core

The nuclear characteristics
loaded cores are shown in Tables 3,

. Homogeneous core
● Core height 100cm
● Fue l 355
● Radial blanket 72
● Control (Primary) 18
● Control (8ack-up) 6

‘lIEgEl*E,f-l’-
11 I I 1000MWe

L= 2 3 9  d

- - l
. Homogeneous core

340 ● Core height 60cm
● Fuel 300
● Radial blanket 61

(Dimension: cm) ● Control (Primary) 18
● Control (Back-up) 6

Fig .1 MOX and Nitride Fuel Cores with
MA and RE.

The plutonium enrichment of RE- loaded
cores is increased by -20% at the introduction
of 1097o RE due to neutron absorption of RE.

The MA loading to core results in
significant decrease of burnup reactivity loss
mainly due to the production of 238Pu from
237Np in fuels. On the other hand, the burnup
reactivity loss increases by the introduction of
RE. The maximum amount of RE would be
limited to 10% from the aspect of reactor
operation . In the case of adding MA and RE in
the axial and radial blanket region, the burnup
reactivity loss can be kept up -3% Ak/kk’ at
the introduction of 20~0 RE.

The maximum linear heat rate of each
RE- loaded core is not so much different with
that of the MA- loaded core without RE.
Concerning to the swing of power distribution
between the  beg inning  and  the  end  o f
equilibrium cycle , it is possible to minimize
the power swing by optimizing the plutonium
enrichment ratio between inner and outer core
region.

The RE- loaded cores can transmute MA
by 10-11% , and there is not large difference
between the MA- loaded cores with and without

of the RE- RE. Since a 1000MWe-class  LWR produces
4and5. about 26 kg of MA per year , an LMFBR with

5?70 MA-loading can transmute the MA mass
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from six LWRS in rough estimation. Minor
actinides  are transmuted at a rate of 670 per
cycle in the axial and radial blanket region.

The control rod worth of the RE- loaded
core is almost the same as the value of the
MA- loaded core without RE.

The Doppler coefficient of the RE -loaded
core is -16% smaller in absolute value, and the
sodium void reactivity is -7% larger than the
MA- loaded core without RE because of the
spectrum hardening.

The breeding ratio decreases as the
increase of the content of RE in the core fuel
due to neutron absorption of RE. The impact of
RE in the axial and radial blanket on breeding
ratio is very small.

It was found that the homogeneous loading of
MA and RE in the MOX fuel core has no
serious penalties t o  t h e  r e a c t o r  c o r e
performance , provided that the amount of MA
and RE in the fuel is less than 5 and 10wtYo,
respectively. It is ossible  to insert -5wtYo  of

fMA and -20wt% o RE in the axial and radial
blanket from the viewpoint of core performance.

Table 3 Core Performance of the MOX Fuel

Core with MA and RE

Item Case-1 Case-2 Case-3 Case-4

RE(wt’%) o 10 30 10

MA(wt%) 5 5 5 20

Pu 16.6( Inner) 20. O(Inner) 29.2( Inner) 21.9( Inner)
Enrichment

(wt70) 20.l(Outer) 24.2( Outer) 35.4( Outer) 26.5( Outer)

Burnup
Reactivity 2.12 3.71 6.40 0.69
(% Ak/kk’)

Maximum
Linear

Heat Rate 407 413 433 416

(W/cm)

3-2. Nitride Fuel Core

Nitride fuel offers a number of advantages
as comDared  with MOX fuel : high densitv  and

powers, and promise
and plant capital
From the parameter

h i g h  ~hermal c o n d u c t i v i t y  y;eld su~erior
breeding performance, allow high specific

reduced costs for fuel cycle
investments for LMFBR.
survey calculations 9 of the

Table 4 Core Performance of the MOX Fuel
Core with MA and RE

Item Case-5 Case-6 Case-7

20 20 20( Radial

I RE(wt%) I (Axial I (Radial I & Axial

Blanket) Blanket) Blanket)

5 5 5(Radial

MA(wt%) (Axial (Radial & Axial

Blanket) Blanket) Blanket)

Pu 15.4( Inner) 15 .4( Inner) 15.4( Inner)
Enrichment

(Wt%) 18.6( Outer) 18.6( Outer) 18.6( Outer

Burnup
Reactivity 3.00 2.79 3.01
(% Ak/kk’)

Maximum
Linear

Heat Rate 428 430 436

(w/cm)

Breeding 1.07 1.08 1.05
Ratio

Table 5 Reactivity Coefficients and Control

Rod Worth of the MOX Fuel Core
with MA and RE

Item Case-l Case-2

RE(wt%) o 10

MA(wt%) 5 5

Doppler
Coefficient -4.3 -3.6

(x103TdlddT)

Na Void
Reactivity 2.7 2.9
(% Ak/kk’)

Control
Rod Worth 1.50 1.47
(%Ak/kk’)

core characteristics of the nitride fuels , it was
found that we can design the nitride fuel cores
having low burnup reactivity and low sodium
void reactivity because of their high breeding
ratios and high linear heat rate leading to the
small core size. The nitride fuel is considered to
be one of the attractive FBR fuels in future
owing to its good core characteristics and
thermal performances.

The nuclear characteristics of the RE-
loaded core using the excellent properties of
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nitride fuel were investigated . In view of
bundle pressure drop, the core height of the
nitride fuel was reduced from 100cm of MOX
fuel core to 60 cm. For the suppression of
increasing burnup reactivity according to lower
core height, the pin diameter was selected by
8.5mm.

The nuclear characteristics of the RE-
loaded nitride fuel cores are shown in Tables 6
and 7.

The plutonium enrichment of RE-loaded
nitride fuel core is increased by - 16% at the
introduction of 107o RE because of neutron
absorption of RE.

The burnup reactivity loss of RE-loaded
ni tr ide  fue l  decreases  by  -2?toAklkk’  in
comparison with that of RE-loaded  MOX fuel
core. It is possible to insert RE in the nitride
fuel more than 107o.

The maximum linear heat rate of RE-
loaded nitride fuel core is not so much different
with that of the MA- loaded core without RE.

The RE- loaded nitride fuel cores can
transmute MA by - 13% , and there is no
difference between the MA- loaded cores with
and without RE. The transmutation rate is
higher in nitride fuel core than in MOX fuel
core because of the hard neutron spectra.

The Doppler coefilcient of the RE- loaded
core is - 14% smaller in absolute value than
that of the MA- loaded core without RE. The
sodium void reactivity of the MA- loaded core
containing 10?6 RE is nearly equal to the value
of the MA- loaded core without RE.

The impact of RE in the nitride fuel core
on breeding ratio is small.

It was found that the nitride fuel core has
potential to transmute MA containing RE while
keeping high core performances and low sodium
void reactivity.

Table 7 Reactivity Coefficients of the

Nitride Fuel Core with MA and RE

Item Case-l Case-2 Case-3

RE(wt%) o 0 10

MA(wt%) o 5 5

Doppler
Coefficient -4.2 -2.9 -2.5

(x1O lTdk/dT)

Na Void
Reactivity 1.9 2.3 2.4
(%Ak/kk’)

Table 6 Core Performance of the Nitride Fuel

Core with MA and RE

1 I 1 I 1
I Item  I Case-1 I Case-2  I Case-3 I

~

1 ? Wln”er)  12.9( Inner) 15. O(Inner)

Maximum
Linear

Heat Rate 767 759 764

(Wlcm)

I Breeding I 1.38
Ratio I 1.41 I 1.34 I
MA

Transmutati - 12.6 12.7
on Rate(%)

5. CONCLUSION

As a result of the study , it was found that
the homogeneous loading of MA and RE has no
s e r i o u s  p e n a l t i e s  t o  t h e  r e a c t o r  c o r e
performance , provided that the amount of MA
and RE in the MOX fuel is less than 5 and
10wt’ZO  respectively. The MA transmutation
rate reaches approximately 10% per cycle with
the loading of the ratio of 5wt9’o MA in a
1000MWe MOX fuel LMFBR. The amount of
the MA transmutation is almost six times as
much as that of the MA production from a
1000MWe-class  LWR. In the case of adding MA
and RE in the axial and radial blanket region ,
it is possible to insert -5wt70  of MA and
-20wt% of RE in the axial and radial blanket
assemblies from the viewpoint o f  core
performance. Minor actinides are transmuted
at a rate of 6?lo per cycle in the axial and
radial blanket region. The nitride fuel core has
potential to transmute MA containing RE while
keeping high core performances and low sodium
void reactivity.
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